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ABSTRACT 

It is proved that a compact metric space X is n-dimensional (n ~ 2) if and only 
if there exist 2n + 1 functions q~l, q~ . . . . .  q~2,+1 in C(X) so that each [ @ C(X) is 
representable as 

f ( x ) =  g~(~o~(x)) withg~EC(R), l_-<i_<-2n+l.  

Equivalently, it is shown that dim X = n if and only if C(X) is the algebraic sum 
of 2n + 1 subalgebras, each of which is isomorphic to C(0, 1). The properties of 
families {q~}~2~ ~ which satisfy the above are studied, and they are characterized 
in terms of their ability to separate the points of X in some strong sense. 

§1. Introduction 

By a classical result of Menger and N6beling, every separable metric space of 

topological dimension n can be imbedded in the (2n + 1)-dimensional Euclidean 
space R 2"+1. However,  the fact that a given space X imbeds into R ~"+~ does not 
determine the dimension of X. In this article we study a special type of 
imbeddings, which characterize the dimension of compact metric spaces. 

Our starting point is the well-known superposition theorem of Kolmogorov 
[4]. It says that for X = I" (n => 2) there exist 2n + 1 functions {q~}~"-~' C C(X) of 

the form 

(1.1) q~(x~,x2 .... , x , ) = 2 q ~ . j ( x j ) ,  q~,.jEC(I), l=< i_<-2n+l ,  l<-j<=n 
j=l 

such that each f E C(X) admits a representation 

2n+1 

(1.2) x=(x , ,x2 , . . . ,x , )EX,  giEC(R). /(x)= 
i = l  
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(I" (n _-> 1) is the n-cube [0, 1]". Throughout this article X, Y will denote 

compact metric spaces, unless otherwise stated. C(X) is the Banach space of real 

valued continuous functions on (X).) This remarkable theorem, which solved 

(negatively) Hilbert's 13-th problem, can be improved and generalized in several 

directions (see, e.g., [6] and [9]). We shall be interested in its extension to general 

compact metric spaces. To state it efficiently we introduce the following 

notation: 

DEHNmON 1.1. Let F={q~i}~l be a family of continuous functions, 

q~i : X ~ Y~, 1 =< i =< k. F is said to be a basic family, if each f E C(X)  admits a 

representation 
k 

(1.3) f ( x )=~ ,g~(~(x ) ) ,  x ~ X ,  withg~EC(Y~), l<=i<=k. 
i = l  

Thus, the family of functions {p~}~"_i' in Kolmogorov's theorem is a basic 

family. Note that it has the additional structure (1.1), but even if (1.1) is ignored 

Kolmogorov's theorem remains highly nontrivial. Given a compact metric space 

X, we shall be interested in basic families F on X, with F C C(X). If dim X = n 

(dim X is the topological dimension of X) then by applying the 

Menger-N6beling theorem, and then Kolmogorov's theorem, we obtain a basic 

family F C C(X) with [F t = cardinality of F = 2(2n + 1)+ 1 = 4n + 3. 

Ostrand [7] improved this result. In particular he proved: 

(1.4) If dim X =< n (n _-> 0) then there exists 

a basic family F C C(X) with I f ]  ~ 2n + 1. 

It is clear that the number 2n + 1 in (1.4) is the best possible. (There are 

n-dimensional spaces which do not imbed in R2".) But it turns out that it is the 

optimal in a much stronger sense; it cannot be reduced for any n-dimensional 

space X, not even when X = I" (and, in particular, the number 2n + 1 in 

Kolmogorov's theorem cannot be reduced.) This is the main result of this article. 

THEOREM 1. Let X be a compact metric space and n a positive integer. Then 

dim X <= n if and only if there exists a basic family F C C(X)  with [FI <= 2n + 1. 

Theorem 1 can be interpreted in several ways. Let us examine some. 

If F={q~,}~=IC C(X) is basic, then the mapping p from X to R k whose 

coordinates are the elements of F is an imbedding, which also satisfies the 

following: any f @ C(~(X))  can be represented as 
k 

(1.5) f(tl, t2 . . . .  ,&)=~g~(t~),  (tl, h . . . . .  tk) C q~(X), g, E C ( R ) .  
j = l  
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Thus, Theorem 1 is equivalent to the following: 

THEOREM 2. dim X _-< n (n = 1) if and only if there exists an imbedding 
q~ : X-+ R 2"+~ which satisfies (1.5). 

For a fixed q~ E C(X)  the collection 

(1.6) A = {g(q~(x)) : g E C(R)} 

is a closed subalgebra of C(X), which contains the constant functions and is 

generated by one element. Conversely, every subalgebra A of C(X)  with the 

above-mentioned properties is of the form (1.6), with some q~ E C(X). Hence, 

the following theorem is equivalent to Theorem 1. 

THEOREM 3. dim X _-< n (n => 1) if and only if C(X) is the (algebraic) sum of 
2n + 1 subatgebras, each of which contains the constants and is generated by one 
element. 

Theorem 3 characterizes dim X in terms of the algebra structure of C(X). We 

wish to mention some additional facts concerning this matter: 

In [12], the following extension of (1.4) has been proved. 

(1.7) Let dim X _-< n (n _-> 0). There exist n spaces Yj, with dim Yi = 
1, 1 _<-j =< n, continuous mappings q6 : X ~  Yj, 1 ~ j  =< n, and 
2n + 1 functions {q~}~2~ ~ C C(X), such that for every 0 _-< k _-< n, 

every collection of k of the q,j's and 2 ( n -  k ) +  1 of the 9~/s 
forms a basic family. 

Moreover, the Y~'s and ~bj's can be so chosen that, with the exception of a set 

of first category in C(X)  2"+', any (2n + 1)-tuple {q~}~"_~' of elements in C(X)  will 
satisfy the above. 

Note that (1.4) follows from (1.7) by taking k = 0. In [12] it has been proved 

that the numbers k and 2(n - k ) +  1 in (1.7) are the best possible for n =< 6. By 

the results of this article, the restriction n = 6 in [12] can be removed. Let {Oj}~'=~ 

and {¢,}~2~ be as in (1.7), and consider the following subalgebras of C(X): 

A, ={g (¢ , ( x ) ) :gEC(R)} ,  l_ -< i=<2n+l ;  
(1.8) 

B i = { h ( 6 j ( x ) ) : h E C ( Y j ) } ,  l<-_j~n. 

(1.7) says that the sum of any k of the Bj's and any 2(n - k ) +  1 of the A~'s is 

C(X). Clearly, both the Ai's and the Bj's contain the constant functions, and the 

A,'s are generated by one element. The Bj's need not be generated by one 
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element. Still, applying the following theorem of Katetov [3], the Bj's can be 

characterized in terms of their generators. 
A subalgebra B of C(X)  is called analytic if B is closed, if 1 E B, and if for 

f E C(X),  f~ E B implies that f E B. 
A family V C C(X) is an analytic generator of C(X), if the smallest analytic 

subalgebra of C(X)  which contains V is C(X). The analytic dimension of C(X)  
is the smallest cardinality of an analytic generator. Katetov proved 

(1.9) dim X = analytic dimension of C(X). 

(For example: if A -- {0, 1} N is the Cantor set, then the analytic dimension of 

C(A) is 0, i.e., the only analytic subalgebra of C(A) is C(A) itself. If T denotes 

the circle, then the analytic dimension of C(T) is one, since V--{sin t} is an 

analytic generator. The reader may easily verify these facts.) 

From (1.7), (1.8), and (1.9) it follows that the Bj's in (1.8) are analytically 

generated by one element. Hence the following stronger version of Theorem 3 

holds. 

THEOREM 4. dim X =< n (n => 1) if and only if there exist subalgebras A~, 
1 < i < 2n + 1, and Bj, 1 <- ] <= n, of C(X),  which contain the constants, such that 
the A~' s are generated by one element, and the Bi's are analytically generated by 
one element, so that [or each 0 <= k <= n, the algebraic sum o[ any k o[ the Bj" s and 

any 2(n - k ) +  1 of the A,' s is C(X). 

Obviously, a basic family separates the points of X, and simple examples show 
that the converse statement is false. It is therefore natural to study the stronger 

separation properties that basic families must share. A simple duality argument 

reveals those properties. This duality approach turns out to be highly significant. 

It exposes the real nature of basic families on one hand, and provides us with the 

main tool for the proof of Theorem 1 on the other. 
Let F={q~}~'_, be a family of continuous functions on X, q~ : X ~ Y .  

1 _-< i < k. Let Y = U~=~ Y~ denote the disjoint union of the Y~'s. Consider the 

bounded linear operator T : C ( Y ) - ~  C(X)  defined by 
k 

T(g~,g2 . . . . .  gk)(x)=~g,(q~,(x)) ,  x E X ,  (g~, g2 . . . . .  g ~ ) E C ( Y )  
i=1  

(i.e., g, E C(Y,), 1 <= i <= k). 

Clearly, F is basic if and only if T maps C(Y)  onto C(X). This occurs if and 
only if T* is an isomorphism, i.e., if and only if there exists some constant 3' > 0 

such that IIT* ,II  /II ,II for all g ~C(X)* .  (Consult [1] for unexplained 

notation and facts concerning the duality argumeht.) 
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A routine check shows that for a Borel measure /_L E C(X)*,  T'IX = 

X~=lixoq~ ~, where Ix o~o71 is the measure of Y~ defined by Ix oq~-l(u)= 

Ix(9, l(u)) ,  u C Y~ a Borel set. Thus 

(1.10) F is basic if and only if there exists a constant 0 < A <= 1, such 

that for every IX E C(X)*, [[IX oq~ '1t=> A lip, 11 holds for some 

~ E F .  

Let  us consider now families F which satisfy the conclusion of (1.10) for 

measures IX ~ C(X)*,  with a finite support (i.e., tx = Y~j"=~ aj6~,, where 6x, x E X, 

is the Dirac measure with mass 1 at x, and at ~ R ; note that IX o ~o-1 = yu% 1 ai6~(xj). 

DEFINITION 1.2. Let X and {Y~}~=l be sets, and let ~oi : X--> Y~ be functions. 

F = {~o,}~=1 is said to be a uniformly separating family (u.s.f. in short) if there 

exists a constant 0 < A =< 1 such that for each tx E ll(X), II/1-° q~ I] --> A II IX II holds 

for some q~ ~ F. 

REMARKS. It is easy to check that if in Definition 1.2 we replace "each 

IX E l~(X)" by "each IX C l~(X) with a finite support"  (i.e., IX =Xj%, aj3~j, 

aj E R),  or even by "each IX =Xj'L~aj6xj E l l ( X )  with a t an integer, and 

IX(X) = 0" we still get an equivalent definition. By applying a duality argument 

similar to the one used above (cf. [10]), one can show that 

(1.11) F is a u.s.f, if and only if each f ~ l~(X) admits a representation 

k 

x X, g, 14Y,) 
i = l  

(where l=(X) is the Banach space of hounded real valued 

functions on X). 

Note that a u.s.f. F on X also satisfies the following: for any two disjoint finite 

subsets A and B of X, there exists some 9 E F so that 

I ~p(A)1"3 ~p(B)l < ½(1 - h)(la I+lB I), 

i.e., if A (3 B = Q then ,p(A)N ¢ ( B )  is uniformly small. It was this property 

which motivated the choice of the terminology "uniformly separating family." 

Thus, a basic family is a u.s.f. We do not know whether the converse statement 

(when applied to a family of continuous functions on a compact metric space) is 

true in general. (If F consists of at most two functions then it is true; cf. [10].) 

We present some examples to illustrate this concept. In the first four X is.a 

subset of 12, while F consists of the two functions ~(x ,  y ) =  x, ~v2(x, y ) =  y. 
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EXAMPLE 1. X is the boundary of a rectangle with sides parallel to the axes 

(e.g. X*{0, 1} x 1 U I x {0,, 1}). Then F is not a u.s.f, on X (e.g., for /~  = 6co.,~+ 

611.,- So.o)- 6(o.,, /~ o q~i j = 0 for i = 1, 2). 

EXAMPLE 2. X is the triangle with vertices at (0,0), (½,0), and (1,1). The 

reader may easily verify that for all O # I ~ E C ( X ) * ,  either ~ o ¢ ~ # 0  or 

p, o q~7 j # 0, but still F is not a u.s.f, on X. (Actually F is not a u.s.f, on any closed 

curve in 12; cf. [10].) 

1 1 1 1 EXAMPLE 3. X={½}XlOl×{~}\{(~.,~_)}. F is a u.s.f, on X with A =~. 

EXAMPLE 4. X = { ½ } × I O l x { ½ } . f i s s t i l l a u . s . f .  o n X w i t h  A---~. 

EXAMPLE 5. Let X denote the circle. Let  {Ai}~=~ be three disjoint arcs in X, 

= = c c ( x )  be and let B~ X\A~ denote the complementary arcs. Let F 3 

any family such that q~ is one-to-one on B~, 1 =< i =< 3. Then F is basic on X with 

A -- -~ (of. [11]). 

Note that in all the examples dim X = 1. Examples in higher dimensions are 

much more complicated. 

The following theorem, when combined with (1.4), provides a stronger version 

of Theorem 1. 

THEOREM 5. If dim X = n _-> 2, and F C C(X) is a u.s.[., then IF] >-_ 2n + 1. 

We prove Theorem 5 in the next section. There we shall formulate two 

theorems, and show how Theorem 5 follows from them. Both theorems, besides 

their role in the proof, will provide us with information on the structure of u.s.f. 

in general. The theorems will be proved in subsequent sections. 

Note that the cases n = 2,3,4, of Theorem 5 have been proved in [10]. 

However,  the proof presented there cannot be pushed through to larger values 

of n. We shall comment on this point again in Section 3. 

Finally, we remark that our proof of Theorem 5 (or Theorem 1) cannot be 

shortened or simplified by narrowing the class of spaces to which it applies. 

Actually, the proof of Theorem 5 for the single space X = I" (which is the most 

interesting and important case) requires the same machinery and dimension 

theoretic arguments as the proof of the general case. 

§2. Proof of Theorem 5 

For a compact metric space X set 

(2.1) a(X)  = min{[FI : F C C(X), F a u.s.f.} 
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and for n _->_ 0 define 

(2.2) a ,  = m i n { a ( X )  :d im X = n}. 

Thus,  by (1.4), a ,  _-< 2n + 1 for  n > 0; and T h e o r e m  5 claims that  for  n > 2, 

a ,  = 2n + 1. (Obviously  a~ = 1.) Le t  us first r e m a r k  that  

(2.3) f o r n = > 2 ,  a , + , > a , _ - > n + l .  

PROOF. Fix some n _-> 2, and assume that  a ,  < n + 1. Thus,  there  exists some  

X with dim X = n ,  and F={q)~}7.=,CC(X) a u.s.f. The  mapp ing  q~ = 

(q~l, q~2,..., q~.):  X ~  R ~o is then an imbedding ,  and hence  (as dim X = n)  we 

must  have  a ,  = n, and also, since a subset  of  R "  is n -d imens iona l  if and only if it 

has a n o n e m p t y  inter ior  (cf. [2]) the inter ior  of q~(X) in R "  is nonempty .  It  

follows that  q~(X) contains  some  n-cube ;  and to save notat ion,  we may  assume 

wi thout  loss of general i ty  that  [ - 1, 1]" C ~p(X). Let  e = (el, e2 . . . . .  e n ) ,  where  

ei ~{-+  1}, denote  the vert ices of [ -  1, 1]". For  each such e, let s(e) =II]=,  ej. Set 

also x~ = p - ' ( e ) ,  and let Ix E l,(X) be defined by Ix = E~s(e)6x. Then  [[Ix II = 2", 

and it is easy to verify that  Ix o q~i ~ = 0 for all 1 _-< i =< n, which contradicts  the 

assumpt ion  that  F is a u.s.f. H e n c e  a ,  _-> n + 1. 

A s s u m e  now that  for  some n => 2, a,+~ = a , .  It follows that  there  exist some  X 

with dim X = n + 1, and F = {q~i}7-"~ C C(X) a u.s.f. The  funct ion q~l maps  X into 

R and hence (see (3.2) in §3 of this article) there  exists some  t E R such that  

dim q~;'(t) = > n. Obviously ,  F '  = {~p~}~_--~ is then a u.s.f, on q~l'(t), and IF ' [  = a ,  - 1 

which contradicts  the definit ion of a , .  

Our  p roof  that  for n _-> 2, a ,  = 2n + 1, consists of two ma jo r  steps.  Bo th  of 

these steps reveal  some  pa t t e rn  of u.s.f, in general .  To  gain some  intuit ion 

towards  the first step,  consider  the space X = 12, and a basic family F C C(X), 
which consists of  cont inuously  di t terent iable  functions,  and which is minimal  in 

the sense that  no F '  ~ F is basic on any X '  C X with n o n e m p t y  interior.  F r o m  

e l emen ta ry  calculus it then  follows that  every  pair  of e lements  of F, when  

regarded  as a mapp ing  f rom X into R-', maps  X to a subset  of R 2 with a 

n o n e m p t y  interior.  This is no longer  t rue wi thout  the differentiabil i ty assump-  

tion. In  the first step we p rove  that  this is still the case with " m a n y "  of the 

n- tuples  of e lements  of F. To  p rove  that  a ,  = 2n is impossible ,  we have  to show 

that,  given F = {~oi}~"=l C C(X) where  dim X = n, there  exists Ix E l~(X) with 

fl/.to q~-' II small with respect  to II Ix ll for  all ~v~ E F. 

Apparen t ly ,  the existence of a "Car t e s i an  produc t  s t ruc tu re"  in " m a n y "  of the 

n- tuples  of e lements  of F (i.e., the n- tuples  which by the first step m a p  X to a set 

with a n o n e m p t y  interior  in R ~) is useful when  such Ix E l~(X) are to be 
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constructed. (A simple example which illustrates this fact is the proof that 

a ,  => n + 1 in (2.3).) In the second step we show that this is really the case. We 

shall introduce now the necessary terminology, and state two theorems: 

Theorem 6 (for the first step) and Theorem 7 (for the second). Then we shall 

deduce Theorems 5 from these theorems. Theorems 6 and 7 will be proved in the 

following sections. 

DEFINITION 2.1. Let n _-> 1 be an integer, let/3 = {/3~}7=1 be a strictly increas- 

ing sequence of positive integers, and let K be a finite set. The concept of a tree 

T of order n and type /3 of subsets of K will be defined by induction on n. 

T is a tree of order 1 and type/3 = {/~1} of subsets of K, if there exists a subset 

T* of K, with [ T* [=>/31 such that T = {{i} : i E T*} (i.e., T is a family of subsets 

of K, of cardinality one each, and T contains at least /31 elements). 

Assume that a tree of order r and type/3 of subsets of K has been defined for 

1 _-< r _-< n - 1. T is a tree of order n and type/3 = {/31 . . . . .  /3,} of subsets of K, if 

there exists a subset T * C  K, with IT*I >/3, ,  such that to each i E T*, there 

corresponds a tree T~ of order n - 1 and type {/31 . . . .  ,/3,-1} of subsets of T* \{i}, 

and T ={{i}U a : a  E T~,i E T*}. 

Note that a tree T of order  n and type/3 of subsets of K is a family of subsets 

of K (actually of T*), of cardinality n each. One can look upon the elements of 

T as "branches"  of a tree, which has the elements of T* in its basis, each i E T* 

branches to at least/3,-1 elements of T* \{i}, each such element j branches to at 

least/3.-2 elements of T* \{j}, and so on. (The branches are considered here as 

sets - -  not ordered sets - -  and hence different branches may define the same 

element o f  T.) 

DEFINmON 2.2. Let X and Y be topological spaces, and let f : X ~  Y be 

continuous, f is an interior function, if for each nonempty open subset U of X, 

f (U)  has a nonempty interior in Y. 

DEFINITION 2.3. Let X and Y~, 1 =< i _-< k, be sets and ~p~ : X ~ Y~ functions. 

For a subset a of {1,2 . . . . .  k} let ~pa :X---~I-I~a Y~ be defined by: (qa(x))~ = 

¢~(x), x E X ,  l e a .  

THEOREM 6. Let X be an n-dimensional compact metric space ( n >= 2) and let 

k u.s.f ,  on X .  {~P,},=1 C C(X)  be a 
Then there exists an n-dimensional closed subset X '  of X and a tree T of order n 

and type {2, a2, a 3 , . . . , a , }  of subsets of {1 ,2 , . . . , k} ,  such that for all a E T, 

Ca : X'--> R" is interior. 
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REMARK. Let  us call a t ree which satisfies the conclusion of T h e o r e m  6, an 

interior tree with respect to F = {~}~=~. Since in T h e o r e m  5 we shall prove  that  

a ,  = 2n + 1 for  n _-> 2, it follows from T h e o r e m  6 that each real valued u.s.f. F on 

an n-dimensional  compact  metric space admits an inter ior  t ree T of o rder  n and 

type {2,5,7 . . . .  , 2 n -  1 ,2n + 1}. 

This result can be slightly improved;  it turns out  that each such u.s.f, admits an 

inter ior  tree of o rder  n and type {3, 5, 7 . . . . .  2n + i} = {2l + 1}Ll. T he  proof  of 

this fact requires  more  delicate arguments  than the arguments  needed  for the 

proof  of T h e o r e m  6, and since we do not  need it, we shall not  present  it here.  

(We refer  to the proof  of T h e o r e m  5 (case (ii)) of [12], in which the addit ional  

arguments  which are needed  in order  to obtain a t ree of type {3, 5 . . . . .  2n + 1} 

are presented.)  

The  type {3,5 . . . . .  2n + 1} cannot  be improved.  Indeed,  let X = 12. Then  

dim X - - 2 ,  and by (1.7), there  exists a u.s.f. F on X, F--{q~l,  q~2, ~03, 4`}, with 

q~ E C(X) ,  i = 1, 2, 3, and 4` : X ~ Y, where  dim Y = 1. Hence  there  exists a 

u.s.f. {4`~}~=, C C ( Y )  on Y so that for  all a C {1,2,3} ( a ~  Q),  dim 4`, (Y)  = 1. (To 

see this one needs the s t ronger  version of (1.7), i.e., that  up to a set of first 

category,  all triples of e lements  of C ( Y )  form a u.s.f.) Le t  T~ ~ C ( X )  be defined 

by r~ (x)  = 4', (4`(x)), i = 1,2, 3. One  checks easily that F '  = 

{~pl, q~, ~p3} U {z~, z2, z3} is a u.s.f, on X. Moreover ,  F '  does not  admit  an interior  

tree of type {4,5} (and order  2). This follows from the fact that for  a = {i,j}, 

1 -<_ i < j _-< 3, ~-~ (X)  = 4`, (Y),  and hence dim ~-~ (X)  = dim 4`~ (Y)  = 1, i.e., the 

interior  of z, (X)  in R2 is empty.  

We turn now to the second step. First we int roduce the concept  of an array. 

DEFINITION 2.4. Let  X and Y~, i@ T* be sets, and let F =  {~o,}~T. be a 

family of functions,  q~, : X--* Yi, where  T* is a finite set of indices. Let  n be a 

positive integer,  and c > 0. 

A measure  /z E l~(X) is said to be an array of o rder  n and constant  c, with 

respect  to F, if the following holds: 

(ar.1) 

(ar.2) 

(ar.3) 

(ar.3.1) 

/z can be represented  as tz =Ej%I e( . / )&,  where  e ( j ) E { m l }  

and {xj}?=x C X is a finite sequence.  

ff = m .  

For  each i E T*,  there  exists a subset L~ of [m] = {1,2 . . . . .  m}, 

so that: 

/zi = Ej~L,e(j)Sxj satisfies /z, o ~,.1 = O, i E T*.  
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(ar.3.2) 

Y. S T E R N F E L D  

If for j E [ m ]  we set 

o'( j )= {i :i E T* , j  EL , }  

then [o'(j) l= < 2 n  and 

I{j:j~[m], I¢(J)l =2n}l---II~ II- cll~ II ̀° '"". 

Note that (ar.2) is equivalent to: 

(ar.2') If xi, = xj: then e Q/l) = e ( j2)  

and also that (ar.3.1) is equivalent to: 

(ar.3.1') There exists a decomposition 

Isr. J. Math. 

G of L~ into disjoint pairs 
E,={{j , j '}} such that, for { j , i ' }EEi ,  e ( j ) . e ( j ' ) = - I  and 

q;i (xi) = q~ (xr) hold. 

The verification of these facts are left to the reader. The usefulness of arrays to 
our goal is reflected in the following proposition: 

PROPOSITION 2.1. Let I~ be an array of order n and constant c w.r.t. F = 

{¢~}~T-. I f  t Z * ) = 2 n ,  then for all i E  T*, ll~ o~:'11/11~1t_-< cll~tt -''°. 

PROOF. If I T*[ = 2n then by (ar.3.2) 

[{j : j  @ [m], ~r(j) = T*$] > ][iz I[- c [[~ I['" l),n, 

and also, if ~( j)  = T*, then j E L~ for all i E T*; so, in particular, for all i E T*, 
Li D {j: o-(]) = T*} and thus ]L~ [-> [[/z ]1- c ]]/z ]]~,-w,. Note also that, by (ar.2), 

II~ll = ~ e~y)a,,[ =IL, I>=II~II-clI~II '°-'>'", 

and 

Hence by (ar.3.1) 

lira - ~11 = ~ , ~ ,  ~(])&, ~c[lmll '~-''". 

I1~ o~7'11--I1(~ o - '  - - 

and the proposition follows. 
The following theorem provides sufficient conditions for the existence of 

arrays. 

THEOREM 7. Let T be a tree of order n (n >-_ 2) and type {2, 4, 6 . . . .  ,2n}. Let X 
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be a topological space, and let Yi, i E T*, be topological spaces in which each 

nonempty  open set contains two disjoint nonempty  open sets. Let  F = {~p~}~er* be a 

fami ly  of  continuous functions, ~p~ : X ~ Y~, so that for all a E 7", q~a : X --~ II~a Yi 

is interior. 

Then there exists a constant c = c (n, l T* [) (which depends only on n and I T* [) 

such that for every integer L >- 1, there exists in X an array Ix of  order n, norm L 

and constant c, w.r.t. F. 

We proceed  now to the proof  of T h e o r e m  5. We shall show, by induct ion on 

n _->2, that  a ,  _-> 2n + 1. Recall  that  by (2.3), a,+~ > a° => n + 1, and that  a ,  _-< 

2 n + l .  

PROOF OF THEOREM 5. The case n = 2. Let  us see first that  a_~ => 4. If not, then 

there  exists a two-dimens iona l  compac t  metr ic  space X, and a u.s.f. F = 

{~p~}~' 1C C ( X ) .  Hence ,  by T h e o r e m  6, there  exists a 2-dimensional  compac t  

subset  X '  of X, and an inter ior  tree of o rder  2 and type {2, 3} w. r . t .F .  Thus,  for  

all a C{1,2,3} with t a l = 2 ,  ¢ ~ : X ' ~ R  ~- is interior.  Set q~4= q~3. Then  F =  

{q~}~ ,, and one checks easily that  T = {{1,2}, {1,3}, {2, 3}, {4, 1}, {4,2}} is a tree of 

o rder  2, and type {2, 4}, with I T* I = 4, w.r.t, which F = {q~}4=1 is inter ior  (on X ' ) .  

F rom T h e o r e m  7 it now follows that  there  exists a constant  c such that  X '  

contains  an a r ray /z ,  of o rder  2, of arbi t rary  norm k, and constant  c ( independen t  

of k)  w. r . t .F .  F rom Propos i t ion  2.1, it follows that  ll/x o ¢ i '  II/11~ II--< ck-'/'-, for  all 

i E T* = {1, 2, 3, 4}, i.e., F is not a u.s.f. H e n c e  a2 => 4. 

Assume  that  ae = 4. Then,  again, let F = {q~}4 ~ C C ( X )  be a u.s.f, on some 

2-dimensional  compac t  metr ic  space X. By T h e o r e m  6, there  exists a t ree T, of 

o rder  2 and type {2,4}, of subsets of {1,2,3,4} which is interior  w.r.t. F on some  

X ' C  X, and clearly IT*I  = 4. Apply ing  T h e o r e m  7, and Proposi t ion  2.1 once 

again,  we obtain  a contradict ion.  Hence  a2 = 5. 

Assume  now that  a , = 2 r + l  for 2 = < r - < n - 1 .  Then  2 n + l = > a , > a ,  ~= 

2 ( n -  1 )+  1 = 2 n - 1 ,  i.e., a ,  => 2n, and we have  to show that  a ,  = 2n + 1. So, 

assume a ,  - -2n ,  and let X be an n -d imens iona l  compac t  metr ic  space,  with 

F = {q~,}~'_'~ C C ( X )  a u.s.f. 

By T h e o r e m  6, there  exists an n -d imens iona l  subset  X '  of X, and a tree T of 

o rder  n and type {2,5,7 . . . . .  2 n - 1 , 2 n }  of subsets of {1,2 . . . . .  2n}, which is 

inter ior  w.r.t. F on X ' .  Clearly,  T is also of type {2,4,6 . . . . .  2 n - 2 , 2 n } ,  and 

Ir*f=2n. 
Apply ing  T h e o r e m  7, and Propos i t ion  2.1, we obtain  a m e a s u r e / x  on X with 

[[/zo q~,lll/l[p~ II =< ck- ' /"  for  all 1 _-__ i _--- 2n where  k is arbi t rary ,  and c independen t  

of k, which contradicts  the assumpt ion  that  F is a u.s.f. 
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§3. Proof of Theorem 6 

We shall first prove the following weaker  version of Theorem 6. 

THEOREM 6'. Let F = {9i}/k=l C C(X) be a u.s.f, on an n-dimensional compact 

metric space X (n >-_ 2). 

Then there exists a tree T of order n and type {2, az, a 3 , . . . ,  a,} of subsets of 

{1,2 . . . .  , k }  such that dim ~¢, (X) = n for all a ~ T. 

PROOF. We shall use induction on n > 2, and begin with the case n = 2. So let 

dim X = 2 and let F = {~v~}~=t C C ( X )  be a u.s.f, on X. 

Note first that we may assume without loss of generality that F is a minimal 

u.s.f, on X in the following sense: no subfamily F ' ~  F is a u.s.f, on any closed 

2-dimensional subset X'  of X. Indeed, if F ' ~ F  is a u.s.f, on some closed 

2-dimensional X '  C X, then we restrict ourselves to X '  and F' instead of X and 

F;  if there is still an X " C  X '  closed dim X" = 2, and F " ~  F' a u.s.f, on X", then 

we pass to X" and F". As this procedure must obviously stop after a finite 

number  of steps, we end up with a 2-dimensional compact  subset W of X, and 

some G C F which is a minimal u.s.f, on W. So, we shall assume that X = W and 

G = F .  

Recall that an n-dimensional compact  metric space X is called n-dimensional  

Cantor  manifold, if for all W C X closed with dim W-< n - 2, X \  W is con- 

nected. By ([2], Th. VI.8, p. 94) each n-dimensional compact  metric space 

contains some n-dimensional Cantor-manifold.  In particular, our  X contains a 

2-dimensional Cantor-manifold,  and hence we may assume without loss of 

generality that X itself is such. 

Recall also that for a mapping f : X - - ~  Y, dim f is defined by 

d i m f  = sup{dimf l(y):  y ~ y}. 

The following lemma, which will be proved at the end of this section, shows 

that under our assumptions, for all a C {1 ,2 , . . . ,  k} with ] a I = k - 1, dim ~ = 0. 

LEMMA 3.1. Let X be an n-dimensional Cantor-manifold, and let F = 

{~,}~=l C C ( X )  be a minimal u.s.f, on X (i.e., no F ' ~  F is a u.s.f, on any closed 

n-dimensional subset of X) .  

Then for each a C {1,2 . . . . .  k} with la]  = k - 1, dim ~, = 0. 

At this point we wish to recall some facts from dimension theory. 

(3.2) Hurewicz's theorem on mappings which lower dimension ([2], 

Th.VI.7, p. 91). Let X and Y be separable metric spaces and let 

f : X --~ Y be a closed mapping. Then dim X < dim Y + dim f. 
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Recall that for a topological space X, dc X (the dimension of connectness of 

X) is defined by: d c X = n  if no closed subset W C X  with d i m W _ - < n - 2  

separates X (cf. [5], p. I64 for more details). Thus, e.g., X is an n-dimensional 

Cantor-manifold if X is compact and dim X = dc X = n. 

The following follows easily from (3.2) (see [10], Th. 4.19, p. 76 for a proof). 

(3.3) Corollary of Hurewicz's Theorem. Under the assumption of 

Hurewicz's Theorem dc X =< dc Y + dim f. 

Finally, we state the following 

(3.4) Theorem on dimension of projections. Let W C R " be compact 

with dcW>=n. If d i m P ~ ( W ) = l  for some t<-_i<-_m, then 

there exists a subset b of {1,2 , . . . ,  m}l{i} with I bl = n -  1 such 

that dim P~ub(W) = n. 

Here Pb denotes the canonical coordinate projection of R "  onto R b, 

b C{1,2 . . . . .  m}. 

(3.4) is proved in [10] (Th. 4.9, p. 74). Let us mention that the cases n = 2, 3, 4 

of Theorem 5 are also proved in [10]. There, the author also conjectured an 

extension of (3.4) which could have been used to extend the proof of Theorem 5 

in [10] to all n _-> 2. However, Pixley [8] has shown that the extension of (3.4), 

suggested in [10], is false. The course of proof of Theorem 5 in this article, and in 

particular the notion of a tree, were introduced to bypass this obstacle. 

We can now conclude the proof of the case n = 2 of our theorem. We shall 

show that, for each l_<-i_- < k, there correspond to indices, jl, j2 in 

{1 ,2 , . . . ,  k}\{i}, such that dim q~l~.j,~(X) = dim q~,.~/(X) = 2. Note that if we 
accomplish this then we are done, since then the tree T with T* = {1,2 . . . . .  k}, 

and T~ = {{j,}, {j2}} for i E T*, is of order 2 and type (2, a2) (obviously k _-> a2), 

and for all a E T (i.e., a = {i,j~} or a = {i, j2}, i ~ T*) dim q~, (X) = 2. 

So, let l_-<i= k. Set [ k ]={1 ,2  . . . . .  k}. Then as F={q~i}~=~ is a u.s.f., 

q~lkl :X~ R k is a homeomorphism, and thus W = q~tkl(X) is a 2-dimensional 

Cantor-manifold in R k. By the minimality of F, P{i}(W)= q~ (X) is a nondegen- 

crate interval in R, and hence dim P{~}(W)= 1. By (3.4) there exists some 

jl E [k]\{i} such that dim P ~ j , ~ ( W ) =  1. (Note that P ~ s ~ ( W ) =  ~0~.s,~(X).) 

Set a =[k]\{jl},  and V =  ~0~(X)C R I~1, then la l  = k - l ,  and by Lemma 3.1, 

dim ~, = 0. Hence by (3.3) dc ~0~ (X) _-> dc X - dim ~0~ = 2. Thus, V is a compact 

subset of R k-~, dc V => 2 and dim P ~ ( V ) =  dim q~i ( X ) =  1. By (3.4) again, there 

exists some j2 ~ a \{i}, such that 

dim P ~ , ~ ( V )  = dim ¢{~.j2~(X) = 2 
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and the case n = 2 of the t heo rem follows. 

Assume  now that  the t heo rem holds for  2 < m =< n - 1 ,  and let F =  

{q~i}~=l C C ( X )  be a u.s.f, on an n-d imens iona l  compac t  metr ic  space X. A n  

obbvious  reduct ion  (as in the case n = 2) allows us to assume that  X is an 

n -d imens iona l  Can tor -mani fo ld ,  and that  F is a minimal  u.s.f, on X. Clear ly 

k => a , ,  and we shall construct  a tree T of o rder  n and type (2, a2 . . . . .  c~,_~, a , )  of 

subsets  of [k],  with T* = [k] ,  such that  for  all b E T, dim ~ob (X)  = n. To  do this it 

suffices to show that,  for  each 1 < i < k, there  cor responds  a tree T~ of o rder  

n - 1  and type (2, a2 . . . .  , a,_~) of subsets of { 1 , 2 , . . . ,  k}\{i} such that  for  each 

a E T~, dim q~ru, ( X ) =  n. So let 1-< i =< k, and to save nota t ion  assume that  

i = 1. F r o m  the minimal i ty  of F it follows that  ~ ( X )  is a closed interval  [a , /3]  in 

R, with a </3.  For  c~ < t </3,  t separa tes  [a,[3] and hence ~o;l(t) separa tes  X. 

T h e  fact that  X is a n -d imens iona l  Can to r -man i fo ld  implies that  dim ~7~(t)_- > 

n - 1, and f rom the minimal i ty  of F it follows that  actually dim q~71(t) = n - 1 

(since {~oi}~=2 is a u.s.f, on ~0?l(t)). Hence ,  by the induct ion hypothesis ,  there  

exists a tree T~(t), of o rder  n -  1 and type (2, a~_ . . . .  ,a , - t ) ,  of subsets  of 

{2, 3 , . . . ,  k}, such that  for  all a ~ T~(t). dim ~a (~PlI(/))= n --1. 

For  a tree S of o rder  n - 1 and type (2, a2 . . . . .  a,_~) of subsets  of {2, 3 . . . . .  k}, 

set 

As = {t : a < t </3 ,  d im ~0, (~pl-l( t))  = n - 1 for  all a ~ S}. 

The  above  a rgumen t  shows that  ( .JsAs = {t : a < t </3},  since t ~ Ar, c,). Since 

the n u m b e r  of such trees is finite, there  exists some  tree T~ such that  At,  is of 

second ca tegory  in [a , /3] .  (Note  that  Ar~ is not  necessari ly closed.) 

W e  shall see now that  for  each a E T~, dim ~t){1}lda ( X )  = n. So fix some  a ~ T~. 

Recal l  that  l a { = n - 1. Le t  {B~}7=a be a sequence  of closed (n - 1)-dimensional  

cubes  in R a, whose  interiors  fo rm a basis for the topology  of R ~. 

Set 

E, = {t " t E AT , ,  Bt C q~a (~-~(t))}, l => 1. 

We  claim that  El is closed in R, and that  Ar~ C ~7=~ E~. To  see that  E~ is closed, 

let {t,. }~=1 C Et be a sequence,  so that  tm > to, to ~ R, and we shall see that  

to~E, .  Since X is compac t  and ~0~ is cont inuous,  ~ o ~ ' [ a , / 3 ] ~ 2  x is upper-  

semicont inuous .  H e n c e  limm~p11(tm)C~o71(to), and since t,, ~E~  for  m _---1, 

B, C ~o~ (~o~-~(t~)). H e n c e  also 

Bt C lira ~o~ (~o~-l(tm)) C ~ (~Ol~(to)), i.e., to E Ex. 

o ~  

T o  see that  AT, C U~=~ E~, fix some  t E AT,. Then  dim ~oa (~o~-l(t)) = n - 1, hence  
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q~a (91 ' (0 )  has a nonempty interior in R ~, and thus ~0a (~01'(t)) contains some B~, 

1 = 1 ,  i.e., t E E ,  

From the fact that At, is of second category, it now follows that there exists 

some l - 1 such that Et has a non-empty interior in R, i.e., El contains some 

interval J. Then for all t E J, Bt C q~, (q~;~(t)), i.e., J x Bt C q~u~ua (X), and since 

J x B, is an n-cube, it follows that dim qhl~o~(X) = n. 

This proves Theorem 6'. 

PROOF OF THEOREM 6. Let F ={p~}~=l be a u.s.f, on an n-dimensional 

compact metric space X (n _-> 2). Let X ' C  X be an n-dimensional Cantor- 

manifold. By Theorem 6, there exists a tree T of order n and type (2, c~2,..., a , )  

of subsets of {1, 2 . . . .  , k} such that for all a ~ T, dim q~a (X') = n. If, for all a E T, 

q~ is interior on X',  then we are done. If not, then there exist an open 

Q # U C X '  and a ~ T  such that q~,(U) has empty interior in R ", i.e., 

dim q~o (U) =< n - 1. Let X" C U be an n-dimensional Cantor-manifold. Another  

application of Theorem 6' yields a further tree T" (of the same order and type) so 

that dim q~ (X") = n for all a ~ T" (obviously T" # T). If q~, is interior on X" for 

all a E T" then we are done. If not, there exists some O # U C X" open and 

a E T" with dim q~o (U)=< n -  1, and the above procedure can be continued. 

Since it must stop after finitely many steps, we shall end up with an n- 

dimensional Cantor-manifold X * C  X, and a tree T* of order n and type 

(2, a 2 , . . . , a , )  so that for each a E T*, q~, is interior on X*. This proves 

Theorem 6. 

For the proof of Lemma 3.1 we shall need the following lemma. 

LEMMA 3.2. Let  F = {q~}~=~ be a u.s.f, on a set X.  Let  a, b be subsets o f  [k] 

with a U b = [k], and  a f3 b = 0 .  I f  q~, is constant on some subset W of  X,  and  

Z C  q~;l(q~b(W))\ W, then {q~,},~, is a u.s.f, on Z. 

PROOF. Let z C Z ;  then q~b(Z)E q~b(W). Hence there exists some point 

~'(z) ~ W such that q~b(z) = ~0b(r(z)). Let now/x  = YuajS,j E I~(Z) be such that 

/ x ( Z ) = 0 .  Set /x '=Zja~&(~)~l l (W),  and also /2 = / x - i x ' .  Then ¢ o q ~ f l = 0  

(since q~ (z~) = q~ (~'(z~))). Hence, since F is a u.s.f, on X, there must be some 

i ~ a such that II/20 q~ ~ II->- A]l/2 [[. (Note that 11/2 II--> JJ/-~ [[ since Z N W = ~ . )  But 

for i ~ a, q~ is constant on W. Thus ~ ' o , ~  -~ =0 .  So 

/2  o ~ ) i  1 = ( /~  - -  / ~ / ) o  ~ 1 = ~ o ~ i  1 - -  /~ t  o ~)i-I = ~,~ o ~  1 

and 
II , ° ,.'11--> Ila II = I1 , II, 

i.e., {~0,},~ is a u.s.f, on Z. 
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PROOF OF LEMMA 3.1. Let a C [k] with l a I = k - 1 be given. To save notation 

assume that a = {1, 2 , . . . ,  k - 1}. Assume also that ~ is not 0-dimensional. Then 

there exists some a = (o~1, a2 . . . . .  ak-~)E R k-~ such that dim q~:l(a) > 1. Set 

W = ~aa(a). Then ~ is constant on W, and thus, by Lemma 3.2, {q~}~_~l ~ is a u.s.f. 

on Z = ~l(q~k(W))\  W. But q~ is a homeomorphism on W, so dim q~ (W) = 1 

and ~ ( W )  must contain some open interval J C R. Hence ~-~(J) is an open 

subset of X which must contain some closed n-dimensional subset X '  of X, 

which is contained in Z, and this contradicts the minimality of F. 

§4. Proof of Theorem 7 

In order to prove Theorem 7, we state and prove a stronger result. Let  us first 

introduce some conventions. Throughout  this section "an open set" will always 

mean "a nonempty open set". W CCX denotes " W  is an open subset of X " .  We 

also assume that the topological spaces Y considered in this section enjoy the 

following property: for any U CC Y, there exist WCC U and V CC U with 
- -  m O (q V = 0 .  If q~ : X---~ Y is a function, and a - {e~,},=l C X and/3 = {/3s}~=1C Y 

are finite sequences, then by "q~(a) = / 3 "  we shall understand that m = k and 

that there exists a permutation of {1,2 . . . .  , k} such that ~o (a~) =/3,,~n, 1 =< i _-< k. 

DEFINITION 4.1. Let  /z =X~'=~e(j)6~j be an array, of order n and with 

constant c, w.r.t, some family F = {q~}~. of functions on a set X. We say that /x  

is a nomral array if, in addition to (ar.1), (ar.2), (ar.3), (ar.3.1) and (ar.3.2), g also 

satisfies 

( a r . N )  for every t rC  T*, I~= , :  ~ e(J)l<=cL'"-~""" 

THEOREM 8. Let X, and Y~, 1 < i < k, be topological spaces, and let {~,}~=1 be 

continuous functions, ~ : X--> Y~, 1 <- i <= k. Let b be a subset of {1,2 . . . .  , k}, and 

let T be a tree of order n (n >1)  and type {2,4,6 . . . . .  2n} of subsets of 

{1, 2 . . . . .  k } \ b, so that I b ] + n >-_ 2, and such that for alt a ~ T, ~aub is interior. 

Then there exists a constant c -- c ( n, IT*i) so that the following holds: For every 

integer L >- 1, and every U CCX, there exists some V CC U such that, given any 
+ L + two disjoint sequences/3 + = {/3s }j=l and/3- = {/3[}~_51 in ~ ( V), with I L + - L -  I <- 

1 and L + + L -  = L, there exists in U a normal array/.t = E~=z e( j )& n of order n, 

constant c, and norm L, w.r.t. F={q~}~T. ,  so that q~({xs},o)=l)=/3 + and 

=/3-. 

Note that Theorem 7 can be obtained from Theorem 8 by taking n _-> 2, b = O, 
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and U = X. The array /z constructed in this manner will also satisfy (ar. N)  

which is not required in Theorem 7. 

We shall prove Theorem 8 by induction on n _-> 1. 

PROOF OF THEOREM 8. The case n = 1. In this case I b I + n - 2 implies that 

b f i ~ .  We also have T = { { i } : i ~  T*} and IT*I_->2. To save notation,  let us 

assume that 1 and 2 are in T*. We also set b l  -- b t_J {1} and b2 = b tA {2}. So, by 

our assumptions, ~Obi are interior for i = 1, 2. 

(4.1) For U CCX we use the symbol V Coo U (i = 1, 2) to state that 

VCCU, and that there exists a cube D = 1-l,~biD, CCII,~b~ Yr, 

with D, CC Yr, so that ~0b, (V) C D C ~ ,  (U). 

We claim that 

(4.2) If VQb,)U and 13 E Cb (V) and a E ~0, (V) then there exists 

some x E U with q~b (x) =/3 and ~o, (x) = a. 

Indeed, since ~0b, (V) C l-l,~b, D~ = D, (/3, a )  E (II,~b D,)  × D, = D and since 

D C ~ob,(U), there must be some x E U so that ~ob~(x) = (/3, a) .  

We also have 

(4.3) For every U C C X  there exists some V such that VC~b~)U, 

i =1 ,2 .  

Indeed, since ~0b~ is interior and U is open, the interior of ~0b~ (U)  in II,~bi Yr is 

nonempty. So, by the definition of the product topology, there must be some 

cube D =FL~b~D,, with D, CCY,, such that D C~b~(U), and we may take 

V = U fq ~o~,~(D). 

Let  us see now that the case n = 1 of Theorem 8 holds with the constant 

c = c(1, IT* I) = 2 (i.e., in this case c does not depend on IT* [). So let L _--- 1 and 

U CCX be given. We construct inductively a sequence { U~}~=~ of open subsets of 

X so that U = UL and also 

(4.4) U2r-1Co~) U2,, U2, C(b2) U2,+~, r = 1, 2 . . . . .  

This is done as follows: set UL = U. Apply (4.3) to obtain some UL-~ C(b~) UL. 

Another  application of (4.3) implies the existence of a UL-2 C(b2) UL-1, and still 

another application of (4.3) provides us with a UL-3 Ctbl) Uz-2, and we continue by 

an obvious induction. Note that if L is even, then (4.4) holds. If L is odd we must 

begin the process with b2 instead of b l  (i.e., UL-~C(b2)UL) in order to obtain 

(4.4). Set V = U~, and we claim that V satisfies Theorem 8 (w.r.t. U and L).  We 

have 

V = U~ C(b~) U~C(b2) U3 C(b~) U4C(b~) U5 C ' . .  
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Let /3+=(~}~=*1 and /3-=(/3~}~--1 be disjoint sequences in cb(V), with 

L + + L -  = L and I L + - L-'[ _-< 1. So 13 [ @ ~Pb (V) = ~p~ (U~). Hence there exists 

some xl E UI with ~¢b (x~)=/37. Clearly, q~l(x~)~ ~l(Uz) and 13[ E ~pv (U,) hence, 

as UlC(b~)U2, it follows from (4.2) that there exists a point x2E U2 with 

q~l(x~) = ~(x2) and q~b (x2) = /3[ .  Now, (~2(X2) ~ i~2(U2) and /3~ E q~b (U2); hence, 

since U2 Ccb23 U3, there exists a point x3 E U3 with ~02(x:) = ~(x~), and ¢~ (x_0 = 

/3. +. We continue inductively, and construct points xj E U .  1 =< j -< L so that 

~l(X2r-1) = (~l(X2r), ~2(X2r) = ~2(X2r+l), 
(4.5) 

/3+ = Cb(X2,-l), /37 = q~b(X=,), r = 1 , 2 , . . . .  

(Note that in (4.4) and (4.5) we did not ment ion the upper bound for r, since it 

depends on the parity of L.) 

Set e( j )  = ( -  l y  +~, and let g = 2~=, e (j)8~,. We claim that g is a normal array 

which satisfies Theorem 8. 

Note first that q~b ({xj},~)=_+,)=/3 ±. Indeed,  {xj}~)=, = {x2,-,},_>, and, by (4.5), 

~0~(x2~_,) =/3~+; also {xi}~(j)= , ={X=r}r>=~ and ~ob(x2~)=/3~. (ar.1) is satisfied tri- 

vially. ¢ 3 + N / 3 - = ~  implies that {X2,.-,},,>_,f'l{X2r}r>l=~, and thus H/xH = 

I/3+1 +1 /3 - [=  L+ + L -  = L and (ar.2) follows. 
To demonstra te  (ar.3) we must identify the subsets L~ of {1, 2 . . . .  , L}, i E T*. 

So let L, = U,~l{2r  - 1,2r}, L2 = [,.J,~ {2r, 2r + 1}, and L~ = O for i E T* \{1,2}. 

(Note that  the union in the definition of L~ and L2 is taken over those values of r 

for which the corresponding pairs are contained in {1, 2 . . . . .  L}. Thus, e.g., if L is 
[ ]c/2 [ I L/z-11 

even then Lj = ,_, r=~ {2r - 1, 2r} and L2 = ,-,~=~ ~2r, 2r + 1}.) In this setting it is 

convenient  to check (ar. 3.1'): L~ (i = 1,2) is actually presented in terms of its 

decomposit ion E~, E, = {{2r - 1,2r}} and E~ = {{2r, 2r + 1}}. Since e (j) = ( -  1y +~ 

we have that for {L]'}~E~, e ( j ) ~ ( j ' ) =  - 1  and by (4.5) also ~,(x~)= q~(xr), 

i =  1,2, and (ar.3.1') follows. To check (ar.3.2), note first that, for i~{1,2},  

L~ = ~ ,  and thus for all j ~ { 1 , 2  . . . . .  L}, o ' ( j ) = { i  : i ~  T*,j~L~} satisfies 

I~r(j)[=< 2. Also, for 2-<_j _-< L - 1, ~r(j) = {1,2}, i.e., 

t{J:lcr(J)[ = 2n = 2}[_- > L  - 2  =l l /x[ [ -  c 

(recall that c = 2) and (ar.3.2) follows. We still have to check (ar. N). Let  cr be a 

subset of T*. If ~r#{1,2} then {j:I<_j<=L, ~r( j )=cr}C{1 ,L} ,  and thus 

[2~:~)=~e(j)l_-< 2 = c. For cr = {1,2}, {j : or(j) = or} = { 2 , 3 , . . . , L  - 1}, hence 

= 

i: ~r i=2 

which settles (ar. N),  and concludes the proof of Theorem 8 for n = 1. 



Vol. 50, 1 9 8 5  SUPERPOSITION OF FUNCTIONS 31 

We proceed towards the inductive step. The following concept and lemma will 

be applied there 

DEFINmON 4.2. Let X be a set, let {q~}~_, be functions on X, let T* and 

b f i Q  be two disjoint subsets of {1,2 . . . . .  k}, let n =>1 be an integer, and let 

c > 0 .  A pair tx=E~-le( j )&j  and 12 =E~=,~(])6~, of normal arrays w.r.t. 

F = {q~}~E~-*, of order n, and constant c, is called a double array w.r.t, b if 

{Xj}/'L=I ('~ {Xj}~=l = O and 

(4.6) q~b({Xj}~(i)=,) = q~b({ij}~(i~=-l), q~b({Xj}~)=-,) = q~b({Xj}~)=,). 

LEMMA 4.1. Let X, Y~, l <= i <= k, {~}~l ,  b, T and n >= I be as in Theorem 8. 

Assume also that b ¢ 0 ,  and that Theorem 8 holds for this n. Then every U CC X 

contains a double array Ix, 12, of order n, with the constant c guaranteed by 

Theorem 8, w.r.t. F = {¢~}~r* and b, of arbitrary norm L. 

PROOF. Let U CCX be given. Fix some a E T. Let ab denote a tAb. Then q~b 

is interior. Thus q~b (U)  has a nonempty interior in Y~ x Yb (where Y, = I I ~  Y~ 

and Yb = II~Eb Y~). Hence there exists some D = A x B C q~ob (U), where D is an 

n + ]b I-cube in Yob, with A an n-cube in Yo and B a I b t-cube in Yb. (Note that 

by an "m - c ube "  we mean a set of the form 1-I~d D~ C Y~, where I d I = m and 

D~ CC Y~.) 

Let A '  and A" be two disjoint n-cubes in A. (A'  and A" exist by our 

assumption of the spaces Y~.) Set D '  = A '  × B and U' = U n ~ ( D ' ) .  

Let L => 1 be any integer. By our assumption there exists some V' CC U' which 

satisfies the conclusion of Theorem 8 for this given L. Let B"C  ~b(V') be a 

[b [-cube (B" exists since q~ is clearly interior.) Set D" = 

A"  × B" C A"  × B C @ab (U), and also U" = U C'l ~ " ¢~b(D ). Apply Theorem 8 

once again to find some V"C U" which satisfies its conclusion. We have 

(4.7) U ' , U " C U ,  U ' A U " = O ,  q~b(V'")C¢~(V'). 

Let now/3, and/32 be two disjoint subsets of q~ (V'") with [~[~1 [ -~ l fl21 = g and 

[lfl~[-[/3--[[ _-< 1. By the choice of V", there exists a normal array /x = 

E~=, e(j)6~j of order n, constant c and norm L w.r.t. F = {¢~}~r* in U", so that 

q~b ({xi}~(j)=~) = fl~ and q~ ({xi}~(~=_t) =/32. By (4.7),/31 and/32 are also subsets of 

q~(V') and hence we can find a normal array 12 = E~lg( ] )6~  in U', so that 

tp~ ({x~}~o)=~) =/32 while ~p~ ({£~}eo)=_~} =/3~. Thus we have 

~p~({x~}~=,) =/3~ = Cb({J?i}~>--,} and ~({x~}~(~_ ~)=/3~ = q~({~/}~(~=~}, 

i.e., (4.6) is satisfied, and the lemma follows. 
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PROOF OF THEOREM 8 - -  The Inductive Step. Let n => 2 be an integer, and 

assume that Theorem 8 holds for all lesser values than n. Let X, Y~, {q~}~=~, T 

and b be as in Theorem 8. For i E T* set bi = b to {i}. Let T~, i E T* be the tree 

of order n - 1, and type {2, 4 , . . . ,  2(n - 1)}, which corresponds to i by Definition 

2.1 of a tree. Then bi f) T* = O and the induction hypothesis can be applied to 

the tree T~, with bi replacing b. (Note that for a E T~ ([ a I = n - 1), bi to a = b t3 

{{i} to a}, where {/}tO a E T by Definition 2.1, and thus q~b~u~ is interior by the 

assumptions of Theorem 8.) Hence, for each i E T* there exists a constant 

c ( n -  1, I T*[) so that Theorem 8 holds with this constant, w.r.t, bi and T~. 

Clearly, I T * [ > I T * [  for all i E T*, thus 

c = c ( n - l ,  I T* [) >= c(n - l, IT*[) for all i E T*, 

and it follows that Theorem 8 holds with this value of c for all bi and T~, i E T*. 

We shall prove that Theorem 8 holds for b and T with the constant 

c(n,[ T* l )=9[  T*1221T'lc(n - l, I T*[). 

Given i E T*, L->-1 and U C C X ,  the induction hypothesis guarantees the 

existence of some V CC U which satisfies Theorem 8, w.r.t, bi, T~, the constant 

c = c(n - 1, IT* [), and (the norm) L. We use the symbol V<tbi.r,.L) U to denote 

that V satisfies the above. 

Let now L be a positive integer and U C C X .  We shall construct a subset 

V C C U  which satisfies Theorem 8, with the constant c(n, IT*l)  mentioned 

above. 
Let m be the largest even integer so that m" < L. One easily checks that 

(4.8) L - m" < 22"m"-1 < 21T*IL~,-1)/,. 

(4.9) CLAIM. For every U CCX, there exist open subsets UI, U2 . . . .  , Upr.! 

and S of U and open sets V~, V2 . . . .  , VIT.I and W so that: 

(i) U~, Uz, . . . ,  Urr*l and S are mutually disjoint. 

(ii) V~ <(bi.Ti.m n-l) Ui, i E T*. 

(iii) q~b~(S)C q~b~(V~), i E T*. 

(iv) W c~,) S, i G T*. 

(Recall that by (4.1), WC~b,)S means that W C C S  and that there exist some 

[ b ] + 1 cube D in Ybi = II,~bi Y, SO that ~Obi (W) C D C ~0b, (S), D = Db X D~, 

Db CC Yb, Di CC Y~. Note also that in this stage of the proof b may be empty. If 

b = O then (iv) is meaningless, and we may take W = S. Clearly, bi ~ 0 for all 

i E T*.) 
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PROOF OF (4.9). Let U CCX be given. To save notation let us assume that 

T* = {i}l~r*~ f. Pick some a, C T,. Then q~.,b~ is interior (where. of course, a~b 1 = 
a~ U bl).  Let A, x Bl C q).,bl(U) be a (Ib I+ n)-cube, with A~CC Y., an (n - 1)- 

cube and B~ CC l"b~ a (!b I+ 1)-cube. (Recall that Ya = II~_. Yi.) Let A'~ and A'[ 

be two disjoint (n - 1)-cubes in A~. (AI and A'j' exist by our assumption on the 

spaces Y~.) 

Set 
U, = q~,,'h,(A ~ x B,)N U. 

Apply the induction hypothesis to find some V~CCU~ so that 
V, <(b,.r,.,~o-,) U,. Thus, in particular, q~b,(V,) C ~b,(U,) = B,. Let Z CC~b,(V,). 
(Such a Z exists since V~ is open and q~b~ is interior.) Set 

~ -  I i a ,  X S~ ~°,~,t, '~ Z )  rhU. 

Since A IN A'[ = ~ ,  we also have S~ (3 U, = Q, and also ~ , ( S j ) C  qM(V2). 

Altogether we have: 

U, and S, are disjoint open subsets of U,, 

(4.10) 
V I ~ ( b I , T I , ~ , I  n l)U] and q~bl(S,)C q~bl(V1). 

Pick now some a2 E T2, and operate on $1 with a2b2 as we have operated on U 

with albl. By doing this we obtain 

U~ and S: are disjoint open subsets of $1, 

(4.11) 
V2 <(b2.T.,." ') U2 and q~b2(S2) C ~b~(V2). 

Clearly. U .  U~ and $2 are mutually disjoint, and since $2 C S~ we also have 

(4.12) q~b,(S:) C q~b,(S,) C q~b,(V1). 

Now pick some a3 E 7"~, and operate on $2 as above with (a3b3), to obtain 

U3, $3 C $2 and V3<(b3,r~,,~,, ,~ U3, and continue by an obvious induction with 

i = 4, 5 . . . . .  J T* }. At the J T* I step we obtain UjT-I, SIT-I C SjT'I 1, and 

VIT* I <(blT.i. TiT.i,rnn-l) U!T*I , 

and we set SIT,~ = S. If b = Q  we set W = S. If b / O ,  apply the fact that ~ is 

interior for all i ~ T*, to construct a sequence W~T't, WIT'I-1 . . . . .  W2, W1 so that 

Wl C(bl)W2 C(b2) W~ C(b3) W4 C "" ° C WIT* I C(blT*bS 

(see (4.3)). Set W = W,  Then clearly W~ C(es) S for all i ~ T*, i.e,, (iv) is satisfied. 

(iii) is satisfied too as shown in (4.10) and (4.11); and so is (ii). (i) holds, since in 
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each step of the construction U~, U2 . . . .  , U~, S~ are disjoint, and U~+~, S~+~ are 

disjoint subsets of S~. This proves (4.9). 

We return now to our given U CCX. Applying (4.9) m times, we construct in 

U open sets U~, V~, S j and W j, l_-<j=<m, l_-<i=<lT*l, by induction on 

j = m, m - 1 . . . .  ,2, 1, as follows: First, for j = m, apply (4.9) on U, to obtain U?,  
V~', 1 =< i _-< [ T* I , S '~ and W" in U, which satisfy (i), (ii), (iii) and (iv) of (4.9). 

Assume that U~ +', Vi +~, S j+l and W j+' have been constructed. By applying (4.9) 

one more time on W j+~, we obtain, in W j+~, U{, V~, i E T*, S j and W( From 

this construction it then follows that 

(4.13.0) 

(4.13.1) 

W i, S j, Vi and U{ are open subsets of W i+1, 1 =< j =< m - 1, 

The sets U{, 1 <= j <= m, i E T* are mutually disjoint. 

(4.13.2) V{<(,~.r,,,,,-,)U{, l<-j<=m, i C T * .  

(4.13.3) W ~ C(bi)S i, 1 <= j <-- m, i @ T*. 

(4.13.4) COb,(SJ)CCObi(V3, l<=j<=m, l E T * .  

i E T * .  

Set V = W 1, and we claim that V satisfies Theorem 8 (i.e., V<(b.~.L)U). 

To see this, let /3* ={ f l ?}~  and 13-= {fl;}~-, be two disjoint sequences in 

COb (V), with L + + L = L and I L ÷ - L -  I - 1. We have to show the existence of a 

normal array IX=E~=le(l)6x, in U, of order n, constant c ( n , [ T * l ) =  
91 T* 122rT*Fc, and norm L, w.r.t. F = {CO~}i~*, such that cob ({x~}, E (1) = + 1) =/3-+. 

Before presenting the details of the proof, which is lengthy and complicated, 
we wish to comment on its general strategy. The sequence {x~}, 1 = l <= L.will 

consist of m + l  subsequences Mj, l<= j -<_m+l .  The first m Mj's will be 

constructed by induction on j = 1 ,2 , . . . ,  m so that the length of Mj is m"-I and, 

rougly speaking, each M, is decomposed into subsequences, most of which are 

normal arrays of order n - 1. Together with the points of Mj, for each x~ E Mj, 

we shall also construct the "sign function" e ( / ) =  +-1, and in the inductive 

procedure we shall see to it that for "many"  x~'s in Mj, there will correspond 

some xr E Mj+I, with e (l)e (l') = - 1 and COi (xt) = COl (xr) for some i E T*, which, 

after "filling up" the amount by constructing M,,.I, will imply that /x = 

E~-=l e(l)t3x, is a normal array as we wish. As mentioned, the sequences Mj, 

j = 1,2 . . . .  , m will be constructed inductively, and such that M/C I,.J~T. Ui 

(which by (4.13.1) guarantees that the Mj's are mutually disjoint). It turns out 

that the structure of M~ does not reveal the whole complexity of the structure of 

Mj for j _-> 2; and thus the presentation of the inductive step (in the construction 

of the M~'s) right after the construction of M~, though possible, might seem 
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unnatural  to the reader .  Hence  we have decided to present  the construct ion of 

M, first, then to show how M2 is der ived from M~, and then to describe the 

inductive der ivat ion of M, from Mj_I. Clearly, some of the features  in M/_~ ~ MI 

appear  also in M~ f f  M2, and thus will be presented  twice. Still, we feel that this 

approach will make  the proof  more  accessible to the reader .  

To  construct  MI, we pick some i U T*,  e.g., i = 1. We also set 

B ~ = {/3 [}TL~ -'/2 and 

(Recall that m is an even integer.) Let  

ce + = {ex ;}7'_-"1 '/2 and 

i" t.) - ' ( m , ,  1/2 
B [  = i r a / l l = l  . 

f - - I m  n 112 
a -  = *tOt I J1=1 

be two disjoint sequences  in ~ ( V ) .  Since V =  W'C(b~)S 1 (by (4.13.3)) the 

sequences 

6[  = {(/3~,a~)}7", -'/2 and 8 1 =  {(/37, a7)}?="1 '/2 

are both  in ~pbl(S1). (Note that 6~ fq 8~ = Q~. Our  proof  covers also the case 

b = O ,  and in that case (where there  are no fl 's)  8~ = a +, and the a ' s  were 

selected to be disjoint sequences.)  By (4.13.4) q~ , (S ' )C~bI (VI) ,  i.e., 8~C 

~pbl(Vl~). Since by (4.13.2) V] <(b~.T,,,,',-') U], we can find a normal  array 

vl = Y-7'--"1-' e(/)6x, in U], of order  n - 1, and constant  c, w.r.t. {q~}icv;, such that 

q~bl({x,}~l~=+,) = 8~. We take M~ = {x,}?="~', and the signs e(1) for  1 ~ 1 =< m "-1 

which cor respond to the array v~ will be taken as the signs in / z  too. In this way 

we construct  m l  = {x~}7'_-"1 ', and e (l), 1 =< l = m"- l .  Note  that ~b ({xt},,)=_-~) = B7. 

To  construct  M2, we shall first have to reorder  M1. Actually,  we shall r eorder  

the indices 1 _-< l _-< m"- l .  Let  ~: : {o- C T'~, 1o-[ =< 2n - 1}---~ T* be a funct ion such 

that ~:(o-)~ ~. (Such a function exists, since IT*l>_-2n, as T is a t ree of type 

(2,4 . . . . .  2n) . )  v, = 275('  e(1)8~, is an array w.r.t. {~i}~v; and, as such, to each 

1 =< l ~ m "-1, there  corresponds  a subset ~r(/)C T~' with [~r(/)[=< 2(n - 1), by 

(ar.3.2). Note  that 1 ~ ~r(/), since T* C T*\{1}. Set "r(l)= ?({1} U o'(l)), 1 <-l<= 
m"- l .  For  i E T* let 

N~ = 7-1(0 = {l : 1 _<- l =< m"-~, r(1) = i}. 

The  N~'s are disjoint sets of indices. (Note that  N~ = O since ?(~r)f f  ~r.) 

(4.14) CLAIM. ]E,EN, e(l)l  ~ 21T*Icm "-2, for all i E T*. 

Indeed,  let i ~ T*.  Then  

= {l : r ( l )  = "~({1} U ~r(l)) = i} = U {l : o-(i) = ~r / 
o- 3 
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where the union is taken over those subsets ~r of T*I such that ?({1} U cr) = i. 
Clearly, the number  of such sets cr is less than 2 IrTI < 2 Ir'r. Hence 

I,~N e ( l ) =  .:~({~)=, , :~=~ e ( l ) I N  ~:~(i~>, ] ,:.~=~ e(1)IN 2'r'l'cm" 2, 

since I£,:~,)=.e(l)l _-< cm "-2 by (ar. N)  as v, is a normal array of order n - 1 and 
norm m "-'. 

Now, we decompose each N~ into 3 sets 1N~, 2N and 3N~ as follows: 
Selection of 1N~: If b ¢ O  we take 'N~ = Q .  If b = 0 ,  we select a maximal 

number  of disjoint pairs {/, l'}C N ,  w.jth e(l). e(l') = - 1 and ¢~(x,) = ¢~(x,,), 
and let *N~ be the union of those pairs. Note that (if b = Q) then, for 1, l' in 
N\'N~, e(l). e(l ')  = - 1  implies that ¢~(x,)~ ~o~(x,.). Clearly, Y.,~%e(1)= 0. 

Selection of "-lV~ and 3N~ : 2N~ is selected to be a subset of N~ \ 1N~ with maximal 
cardinality, so that £~=N,e(1)= 0. (For example, if 

I{l e ~ \'N~ : e ( l ) =  1}[= I{l e N ~ \ ' ~  : e ( l ) =  -1} l ,  

then we take 2N~ ={IEN~\'N~:e(1)=I}UP, where P C { I E N \ I N ,  : e ( 1 ) =  
- 1} is a subset with I PI = I{l E N, \~N~, e (l) = 1}l. ) 

We also set 3N~ = N~ \CN, U2N~). The following then holds: 

(4.15) ~ e(1)=O and also ~ e(l)=O. 
I~2Ni IE1N2 

(4.16) I ~ e ( l ) l  = [3~1 (i.e., the elements of 3N~ have constant signs). 
/ IE3Ni 1 

Indeed, if l and I' are in 3N~ and e( l ) .  e(l') = - 1, then we can add l and l' to 
2N~ without harming (4.15), and since 2N~ has been selected to be a maximal set 
with (4.15), (4.16) follows. 

(4.17) 

Indeed, by (4.14) 

We also have 

j3N [ <-N_ 21r'lcm "-2. 

2 2 I 
IEINi IC2Ni IE3Ni 

(4.18) ~ ~ e ( l ) = 0 .  
lET* IE3Ni 
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This follows from the fact that 

2 2 e ( l ) =  2 2 e ( l ) - ( ~ ,  2 e(l)+ 2 2 e(l)). 
I E T *  l~3Ni i ~ T *  I E N  i i ~ T *  I~ lNi  i ~ T *  1~2Ni 

Each of the sums 5;t~,N, e(1), E ~ %  e(l) is 0 by (4.15), while 2 ~ r .  E~N, e (1 )=  

Z,~M, e(l) = O, since 

I { / :  1 < l < m"-' e ( l ) =  1}1-* = 1 = = , -~m =l{l:l<l<=m "-~,e(1)=-l} I, 

which follows from the fact that the xt's which correspond to the l's with 

e(l) = - 1  are mapped by q~b~ onto 6 ±, and both ~+ and ;~- are sequences of 

length ~ "-~ ~_m . Finally 
I f b = ~ ,  then 

(4.19) q~, ({x~}, I ~ N \'N~, e( /)  = 1 )n  ,~,({x,}, l ~ N, \~N~, e(1)= - 1 )=  ~ ,  

which follows from the selection of 1N, (In particular (4.19) holds for 2N C 
N, \iN,.) 

We come now to the construction of M2. For each i ~ T* we shall construct a 

sequence Mao in U~, and take M2 = I,.J~r. Mz~, (in some ordering.) Each Mao 
3 will be constructed as a union M2(i) = 1M2(i) U 2M2(i) [.J M2(i). So, fiX some i ~ T*. 

We shall first construct ~Mao. For a subset P of {1,2 . . . . .  m" 1} let 

P+={l:l~P,e(1)=l} and P - = { l ' l ~ P , e ( l ) = - l } .  
1 2 2 + " +'12Nil/2 

By (4.5), 12N;I = 12N;I ==l N,[. Let B2(i) ={flr/`=~ be a subsequence of 
", .f ~ _ d a N . l / 2  ,~ + 3+\B~ and -B2(o=t/5,/,=] a subsequence of /3 \ B L  Then -B~ioC ~ ( V ) =  

~ (W~)C~o~(W 2) by (4.13.0) and since M t C  UIC  W 2, we also have that 
~o~ ({x~}t~<) c ~o~ (W 2) and ~o~ ({x, }~m ) C ~o~ (W2). By (4.13.2), W ~ G~o $2. Hence, 

we can select in ~o~, (S 2) two sequences ~82+,) and ~82~o of length ½12N~ I each, such 

that 
+ \ /12N/1 /2  + . .  I~ 'N I/2 

2 8 2 + ( i ) = { ( / 3 r , O g r ) f r =  1 and ~82(o = {(/37, ce, )b=i 

where 
-~[2N I/2 f +ll2NiI/2 

{0~,Jr=i = ~0~({Xt}~2NT) and ~a,~,=~ = ~0~({Xl}~2N;}. 

words, 8ao is a sequence in ¢b~ (S 2) C Yb x Y~, such that if we project it (In other 2 + 

into lib we get the sequence 2B2~o, + while if we project it into Y~ we obtain the 

sequence ~o~ ({x,},c-N.); 26ao is projected to 2B~o in Yb and to ~o~ ({x,}~2N~) in Y~. 

As mentioned above, the existence of the 282,) follows from (4.13.3) and (4.2).) 

Note that ~82+~oA~8~o=Q. This follows from (4.19) if b = Q  (i.e., 

28~,)= ~0~({X,},~N~)) and from the disjointness of /3-+ if b f i Q .  By (4.13.4), 
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28ao C q)b, (S 2) C pb, (V~), and by (4.13.2), V~ <(~,.r,,m"-b U~. Hence we can find in 
,~ __I2N. I 

U~ a normal array ~u~u) = )2~=~ s(r)&, w.r.t. {q~,},~r;, of order n - 1 and constant 

c, so that q~b/({z,},(,)=_+~)= ~82u) and, in particular, 

q~b({z,}~(,) _+1)=-'B;(i) and ~i({Zr}s(r)-+l} = ~l~i({Xl}l~2N+i). 

We take {z,}~:',' = 2M2u). 

Now we select 3M2u~. By (4.16), the elements I E3N, have a constant sign. 

Denote this constant sign by e (i.e., for l E ~N, e (l) = s). From the elements of 

the sequence/3-" which have not been selected yet, we select a sequence 3B2(i) of 

length [3N/ I. Since 3B2(i)C q~b(V) c (Db(W 2) and q~/({x,}t~%)C q~/(W 2) (by 

(4.13.0)) and since W:qboS  "-, we can find in ~#b/(S2) C Yb × Y~ a sequence 3&,u~, 

whose projection into Y~ agrees with 3B2o) , and whose projection into Y~ agrees 

with q~/({xt},~-%). By (4.13.4), 382u) C q~/(S 2) C q~/(V~), and as V 2 C U~ (which 

follows trivially from (4.13.2)) we can find in U~ a sequence 3Mao of length '}3N/I 

so that q~/(3M2w)= 38~u). We also assign a sign to the indices of the sequence 

3Mao. The sign of the indices of 3M2u) will be constant, and will be the opposite 

sign to the sign of ~N, i.e., if the sign of ~N/was s, then the sign of ~M2v) will be 

- s .  Note that 

3M2u) n {z, : z, ~ 2M2u), e (r) = - s (3M2u))} = O 

(where s (3M2(i)) is the constant sign of the indices of 3M2(i)). Indeed, assume, e.g., 

' ' M  = /3+ that e (Mao)  = +1. If b ~ Q ,  then by the construction q~b(- ao) ~B2toC 

while 

¢~ ( { z , "  z, ~ ~M~(,), ~ ( r )  = - 1 } )  = ~B2( , )  C / 3  , 

and since/3 + n /3 -  = O, we are done. To settle the case when b = 0 ,  note that we 

also have 

p/('M2w) = ¢/({x, },~.N,) C q~/({x, : l E N~ \ ' N .  s (I) = - 1}), 

and by construction of eM2u), 

2 D 
~i ({Z, : Z, E M2(i),e(o=-,}) - ~i ({Xt}tE2N,,~(O=+,)- 

If b = 0 ,  then by (4.19) these two sets are disjoint, and our claim follows. 

Finally, we construct 1M ao. This is done only if b = 0 .  Applying Lemma 4.1, 
l r2\12 M we select in ~ / ~  2(i) U 3Mao ) a double array 

] IN 112 {1 Ni l /2  

1/22(0= E e(t)6y,, l~2u,-- ~ Y(s)8~., 
g = l  $ = 1  
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of o rder  n - 1, constant  c, and norm ½1~N/I each, w.r.t. {q~}~er; and {i}. (Note  that  

~N~ has been  defined to be the union of disjoint pairs,  and hence ½]~N~[ is an 

integer;  note also that  L e m m a  4.1 has been  fo rmula ted  for  n (and not for  n - 1) 

and we apply  it here  for  n - 1 ,  as we can by our  induct ion hypothes is  on 

T h e o r e m  8 for  n -  1. Finally, obse rve  that  the " b "  f rom Defini t ion 4.2 of a 

double  ar ray  is replaced here  by {i}, i.e., we have ~0/({Y,}~c,) ±1) = (~i ({ys)g(s)=~l) ' )  
l IN 1/2 t ~ I I1NI /2  

We s e t  I M 2 ( i )  = { y t ~ t = i  U /y~?~=~ . Also, we assign signs to the indices t and s, 

by the cor responding  signs in ~v2~/~ and '~20~. M20~ is defined to be ~M2~/) U ~M2~/) U 
3M20~, and M2 = U~e-r. M2~/). 

REMARK. When  we construct  M~,~, i ¢ T*,  we may  begin with M20s, then  

construct  M2~2), and so on. In each step,  however ,  we must  be  careful to select 

the " n e w "  f i ' s  f rom the ones  which have not been  selected in earl ier  steps. 

We  come  now to the inductive step in the const ruct ion of the M/ 's .  As sume  

that  M~, M2 . . . . .  Mj , have been  const ructed so that:  

(4.20) 

(4.21) 

(4.21.1) 

M, i s a s e q u e n c e o f l e n g t h m " - ~ ,  l = r  < _ -< j -1 .  

For  each 1 N r N j - 1, M, is the union Mr = [.J ~T* Mr,), 

so that  for each i E T*:  

Mrc~ CUT,  

(4.21.2) 

(4.21.3) 

(4.21.4) 

R E M A R K S .  

and Mr(~) is the disjoint union Mrc~) = ~Mr,) U 2Mr,) U 3Mro), so 

that  

The  points  of 2Mr~ are the a toms of a normal  ar ray  2vm) of 

order  (n - 1) and constant  c, w.r.t. {q~s}se-r~, and the measu re  

2vr~j) satisfies ~-v, co(X) = 0 (i.e., in the sequence  -~M,,~ there  are 

equally many  indices l with c ( l )  = 1 and e(1) = - 1). 

If b ~  O then JM,~ = •,  while if b = Q3 then the points  of ~Mrc/) 
I - are the a toms  of a double  ar ray  ~ u,~.) and u,~,~, of o rder  n - 1 

and constant  c, w.r.t. {q~}~er: and {i}. 

The  sequence  3M,~o is given toge ther  with a sign funct ion e on 

its set of indices (i.e., e : 3M)~0---~ { ± ~ * " 1} where  M r ~  Is the set of 
3 , T* indices of 3M,,)) so that  e is cons tant  on M,,)  for  each i E 

and Eier* Ete3M~i, e(l) = O. 

(i) The  index sets of JMro), 2M~c/~ and 3M,,~ now have  a natura l  sign 
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function e: for 3M,(~) this follows from (4.21.4), while in the case of ~M,(~> and 

~-Mr(~) which are atoms of arrays, we adopt the corresponding signs of the arrays. 

(ii) Note that the above structure of M, applies to M~ too. In this case 
M,<o = Q for 1 ~ i E T*, and ~MI(~) = 3 M l o )  : Q~ too, i.e., M~ = 2M~(~>. Actually, 

we could have introduced the inductive step right after the construction of M~, 

but at that point of the construction the introduction of conditions such as (4.21) 

and its followers could have appeared unnatural to the reader. To avoid this we 

have constructed M2 first which, as we hope, explains the sources of (4.21). 

Note that from (4.21.2), (4.21.3) and (4.21.4) it follows that 

(4.21.5) ~] e( l)  = 0. 
I G M *  

(where e ( ' )  is the above-mentioned sign function). Indeed, for a given i E T*, 
Zt~2~,~,) e, ( I )=  0 by (4.21.2) and by (4.21.3), Z~,~,% e(1)= 0 too. Hence (4.21.5) 

follows from (4.21.4). 
As in the construction of M 2 ,  before constructing Mj, we introduce a 

reordering of the index set M*1 of Mj_~. Actually, we shall reorder M*, for all 

r =< j -  1. We begin with the following 

M,(i>---> (where M,~)is (4.22) CLAIM. There exists a [unction -r : U ~7-. 3 * T* 3 • 

the set of indices of 3M~(~)) such that[or I E 3M,*(,), r ( l )  ~ i, and so that 

for all i E T*, 2;E,-,u)e(1) = 0. 

3 * Indeed, set d - - m i n , ~ . l  M;<,)l. Let us assume that d = [~M~,)I and that e 
attains different values on 3M,~) and 3M*,a) - (There is no loss of generality in these 

assumptions.) 
3 * Let G C M;(2)be a set so that d = I G[. (G exists by the minimality of I~M~)[.) 

Define now r on U ~ T .  3 * M,(o by 

, r ( / )={31 i f l E a M ~ ' ) U G '  ~ • 

if l E3M~z)\G or 1 E U M,~). 
l E T *  
i>3  

(Recall that T* = {1,2 . . . . .  [ T ' I}  and that I T*[ _-> 4 since n _-> 2.) 

It follows at once from this definition that if 1 3 • E M~c~) then 1-(I)~ i. Also, if 

iff{1,3} then r - ' ( i )=  O. For i = 3 ,  r '(i) =3M,¢~)* t0 G;  hence 

l•-r-l(3) 1 E3Mr~i) l E G  
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and since both ~M,~) and G have the same cardinality d, and e attains opposite 

signs on these sets, the sum is 0. Finally, 

E e ( / ) =  E ~ (1 ) -  E e(l),  
/E r - I ( l )  l~Uie-T*3M~i) 1~7" 1(3) 

and both terms in this sum are 0, the first by (4.21.4) and the second by the above 

observation. This proves (4.22). 

We now wish to extend the function r of (4.22) to M*.  This is done as follows. 
Let ÷:{og'oJ C T*,l~ol < 2 n  -1}--* T* be a function so that 

(4.23) e(o)) ~ w. 

3 This is possible since I T * I =  > 2n. Let l E M * / U , ~ r .  M, io. Then l is an index 

of an atom x~ in one (and only one) of the arrays ~ ~ " T* u,,), u,,) or u,,), i E (by 

(4.21)) and, as such, the set ~r(l) is well defined, so that lo-(l)l ~ 2 ( n -  1) and 

~r(l) C T* (by (4.21) and (ar.3.2)). We now define 

(4.24) z(l) = e({i} U o-(l)), l C M* \ U 3M;.,,. 
i ~ T *  

Thus, by (4.22) and (4.24) z is now a well-defined function from M* into T*. 

Note that by (4.22), (4.23) and (4.24) the following holds: 

(4.25) For 1 E M*,  if I E M;],) then r( l )  ~ i, and if l is an index of an 

atom of an array in M,,) (i.e., l E~M,u~U'-M,u~) then also 

r( l )  ~: {i} U o-(l). 

Set 

(4.26) 

(4.27) 

Indeed, 

CLAIM. 

Nr(i) : 7" l ( / ) ,  i E T* .  

For all io~ T*, IE,~N,,,o,e(l)l<=3lT*12!7*lcm" 2 

N,~,) = N,(~,) n -M;.) u U ( (N,~  n ~ * 
i * i~'l '* 

and this is a disjoint union. We shall estimate Y e( l )  on each of these sets. So, let 

io ~ T* be fixed. 
(i) By (4.22), 

X 
IENr(IO)~(UiET*3M~i)) 
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(ii) 2M~) is the index set of the atoms ~M,(o of the normal array 2v,~ of order 

(n - 1) with the constant c, and as 2M, o) C Mr, it follows from (4.20) that 

]]=//r(i)ll = 12MRS/)[ ~ m "-1. 

Thus, by (4.26), (3.24) and (ar. N), 

t 2 e(l)]=[ 2 e(l) l< 2 1 2  e(1) I 
2 t i  IENt(iO)n2Mr*(i ) IEZM~i), '~({i}Uo'(I))=io o 'CT* i IC  I~  ( ) 

Io-l-<2(n- 1) cr(l)-o- 
~({i}tJo-)= i 0 

N21T;I I ~ e(l) l<=21r;Icm"-2<21r'lcm"-2. 
IE2Mr*(i) 
o-(/)=o- 

(iii) l , M;to is the union of two sets of indices, each of which is the set of indices 
of atoms of some normal array ('v,@ and 'g(o) of order (n - 1), constant c, and 
norm =< m"-l. Hence, an estimate as in (ii) applies to each of these sets, and it 

follows that 

I ~ e(l)]<=2"21T'%m "-2. 
IENr(i)f31Mr*(i) 

(4.27) now follows from (i), (ii) and (iii). (Note that the estimates in (4.27) are 

very generous, and can easily be improved; however, we find it convenient to use 
this estimate. The main point in (4.27) is that the bound for I E~N,,~ e (l)l does not 
depend on r.) 

Now we decompose each N, co into 3 sets ~N,v), 2N,@ and 3N,~o, in the very 

same way we decomposed N~ before constructing M2. 

(4.28) Selection of 'N,,). If b ~ @  we take JN,@=@. If b =@, we 

select a maximal number of disjoint pairs {/, l'} C N,@, with 

e(1). e(l') = - 1 and q~,(x,) = ~o,(x~,), and let 1N,(o be the union 

of these pairs. 

(Recall that x~ is the point in Mr whose index is l ~ N,@.) Note that 

(4.29) If b =@, then for I, l' in M,(o\lN,~o, e(l).e(l')= - 1  implies 

that q~, (x~) ~ q~ (x,,). 

From (4.28) it also follows that 

(4.30) Z e(l)= o. 
I E] N,(O 
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(4.31) 

(4.32) 

We claim that 

SUPERPOSITION OF FUNCTIONS 

Selection of 2N,~. 2N,(o is selected to be a subset of N,c~\IN,(o, 
with maximal cardinality, so that Z,~N,,, ~ (l) = 0 (cf. the corres- 
ponding selection of 2N~). 

Selection of 3 N,(i). 3 N , ( i )  = N.i) \ (' N,(~) U 2Nr(i)). 

(4.33) The sign function e is constant o n  3Nr( i )  for each i, and 

Ei~T. Et~N,,,~ e(l) = 0 

and also 

(4.34) 13N., I 31 T* 12:'lcm"-L 

43 

Indeed, if l and l' are in 3N,(~) and e(l). e(l ')  = - 1 ,  then we can add both l 

and l' to 2N,(i) without violating (4.31), and this contradicts the maximality of 

2N,(o. Hence e is constant on 3N, c~ ). Also, 

i~T* IE3Nr(i) i~T* tENrli) i * l~lNr(i) i~T* lE2Nrli) 

The first term in this sum is 0 by (4.21.5) (since U ~ T ,  N,(o = M~o). The other 
terms vanish by (4.30) and (4.31). This proves (4.33). Hence, 

[3N~"'[= [,~N,,,, ~ e ( l ) =  ,e~N.ce(I),, 

(since the sums over 1N,,) and 2N,(o vanish by (4.30) and (4.31) and 

[ ~ e(1)[<=3lT*[ 21T'lcm"-2 
IEN,(i) 

by (4.27), which proves (4.34). 

For a subset P of M* let P-* = {l E P : e(l) = - 1}. Finally we have 

(4.35) If b = O then 

q~i ({X,} : l (~- ( N r ( i ) \  IN,(,))+) fq (#, ({x,} : l E (N,,)\ 'N~o))-) = 0. 

This follows from the maximality of ~N~(o (cf. (4.28)). In particular we have 

q~, ({x,} • l E 2N,~,)) t3 ~0, ({x,} : I E 2N~,)) = 0. 

We are now ready to construct/V/j. M/ will be constructed to be a sequence 

which satisfies (4.20), (4.21) and (4.21.p), 1 =< p <= 4. The construction is practi- 

cally identical to the construction of M2. Hence are the details. 
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(4.36) 

(4.37) 

Y. STERNFELD Isr. J. Math 

Construction of "-Mw). By (4.31) 

[2N~- , , , ] -  [~N~-,,,,,[ = ½[~Nu-~,,,I. 

Let 2Bj~ o and 2B~,) be subsequences of/3 + and/3-  respectively, 
l 2 j ~  l of length ~ u-oc) each, which consists of elements of 13 ÷ and 

/3- that have not been selected earlier in the construction. Then 
2B~o C ~b (V) C ~b ( W j) (by (4.13.0)) and since 2Nu_,)6 ) C Mj_, C 
[--J,~r" U~-'C W i ((4.21.1) and (4.13.0)), and W j Ccb,)S i (by 
(4.13.3)) we can find (by (4.2)) in ~ob, (S j) two sequences 26~o and 

~6~,  of length ½/:Nu-o,)[ each, so that the projection of 2~,) 
into Yb is 2B~,), while the projection of 26i~ o into Y~ is 
q~({x~}:l~2N~_,,)) and the projection of ~fi~) into Y~ is 

~,({x,} : l  ~ ÷ ~ ÷ 2 - _ No-,to). ~w)f3 8w)-Q) .  This follows from (4.35) 
if b = ~ ,  and from the fact that /3+N/3-=Q),  if b / Q ) .  By 
(4.13.4) 26~,) C ~p~,(S') C q~, (V{), and by (4.13.2) 

V{<~,~.r,.~.-,) U{. Hence there exists in U~ a normal array 

12N )(i)l 

%,,)= ~ e(s),~ 
s= l  

w.r.t. {q~,},~r~, of order n - 1, constant c, and norm I:No_l)~O[, so 

that 

,~,({z~} : ~ ( s ) =  -+ 1) = ~ ; , , , ,  

and inpart icular  ~({z,} : e(s) = -+ 1) = 2B;.) while 

~i  ( { z , }  : e ( s )  = -+ 1)  = q~, ( {x , }  : 1 @ 2N~-,) to) .  

(Note the +-- and ¥ !) We set 

2Mw) = {z,), 1 _-< s _-< I2N¢/-,)(,)]. 

Construction of 3Mm). By (4.33) the sign function e is constant 

on 3No_l).). Denote this constant by e. Select a subsequence 

3Bw) of /3 -~ \{the elements of /3 -~ which have already been 

selected} of length I3Nu-D(0[. Since 3B/(i) C q~b (V)  C q~b ( W  i ) and 
q~, ({x,} : 1 E 3No_~)~,)) C q~, (W j) (by (4.13.0)) and since W j Ccb,)S j, 

we can find in ~ob~ (S j) a sequence 28w~ whose projection into Yb 

agrees with 3Bw) while its projection into Y~ is q~({x~}: l E 
3N~_1),)). By (4.13.4)~w)C ~b~(Si)C ~b~(V~), and since from 
(4.13.2) it follows that V~C U~, we can find in U~ a sequence 
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3Mj(,> of length [3Nu_,o)l, so that (~bi(3Mj(i))=3~j(i). W e  also 

assign a sign function e to the indices 3Mj~ o of 3Mm), which will 
3 * be constant on Mj( o, and will be the opposite sign to the sign of 

3No_axo (i.e., if the sign of 3No_o( 0 is e, the sign of 3Mm~ is - e). 

We claim that 

(4.38) 3Mw~ fq {z, ;z, E :M,o,  e(s) = - e (3M~,,)} = 

(where e(3Mm) ) is the constant sign of this set). 

Indeed, assume, e.g., that e(3Mfio)= 1. If b / O  then ¢b (3Mj,))= 3Bj(,)C/3 +, 

while 

~ob({z, : e ( r )  = - 1} =~Bj(,)C [3 

by (4.36), and since fl+ fq/3- = Q, (4.38) follows. If b = Q, we argue as follows: 

by (4.37) and" (4.32) 

~o/(3Mj,)) = ~/({xl} : 1 E 3N(/_l)(i)) C qgi (ix/}" l E (No-lxo\ 1Nq l)(i))-), 

and by (4,36) 

~o,({z~:z,~2IVI~(o,e(s) = -1})  = q~i({x,} : 1 E 2+N(j o(/3. 

Hence, if b = Q, these two sets are disjoint by (4.35). 

(4.39) Construction of 1Mm> (only if b = Q). Applying Lemma 4.1 we 
select in j 2 U/\( Mj(oU 3Mm3 a double array 

'uw>= e(s)3,, and 16.~= g(s)G,, 
s=l  s=l 

'l~Nu '),)[ each, w.r.t. of order n - 1 ,  constant c and norm 

{q~,},~r; and {i}. We set 

lz~r/(i) = {y, } U {.,~ }, l<=s<=~l~No-~x,~t. 

Now we define 

(4.40) Mj(o = 1Mj(i) U 2M](i) U 3Mj(i)  and M j =  U Mm). 
i~T* 

By (4.39), (4.37) and (4.36), Mj( o C U{. Also, from the above and (4.38) it 

follows that if x /and  xr are in Mm), and e(l).  e(l') = - 1, then xt# xv. Since the 

sets U{are disjoint (by (4.13.1)), e(1)e(l') -- - 1 implies x~# xr for x/, Xr in Mj. 

We check now that (4.20), (4.21) and (4.21, p), 1 < p _-< 4 hold for Mj. 
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By (4.39), (4.37) and (4.36) the sequence PMj(i), p = 1,2, 3 is of the same length 

as the set PN~-I),~. By (4.26), [-J~7-. N(j_~),) is a decomposition of M~j-I), and 
N(j_,)( o = [_J~=, PN~_,~,)is a decomposition too (by (4.28), (4.31) and (4.32)). Thus, 

since by (4.20)IM~_,)I = "-' m , the same holds for M* too. 

(4.21) and (4.21.1) for Mj follow from (4.40), (4.36), (4.37) and (4.38). 

(4.21.2) for Mj follows from (4.36), and (4.21.3) from (4.39). To verify (4.21.4) 

for Mj, note that by (4.37) 

6(3M/0) )  = - e(3N(j oo)) for all i E T*. 

Hence (4.21.4) for Mi follows from (4.33). 

This completes the inductive construction of Mj, 1 _-< j_-< m. Note that, by 
m 

(4.20), [ [._Jj=, M * I =  m .  m "-~= m". (We assume here, as we clearly may, that 

the index sets for different M/'s are disjoint.) 

We still have to construct M,+,. This is done as follows. 

(4.41) Construct ion  o f  M,,+,. By (4.21.2), (4.21.3) and (4.21.4) 

~ +  - -  * -  - -  , n - I  IM,  I - I M ,  } -~m for all 2 =< j _<- m, 

and by the construction of M,, the same holds for M~ too. So, if 
m 

b ~ O ,  then by (4.36) and (4.37) ~({x~ :x, E I,]~=, Mj, e ( / ) =  

! m , ,  +1}) is a subsequence of /3± of length 2 . Recall that 

1/3+]+1/3-1=L and I I/3+1-1/3-1[ --<1. (Note that l/3[ for a 
sequence/3 denotes its length, and not its cardinality as a set.) m 
was chosen to be the largest even integer with m" _-< L. So, if 

m" < L, Let '/3-+ be the subsequence of/3 -+ which remains after 
m 

removing from/3 -+ the subsequences q~b ({x~ C [..J j=, Mj, e (l) = -+ 
1}). Let M,.+, be the union of two sequences M++, and M~,+, in 

V so that ~pb (M~,+,) = '/3-+. We also extend the sign function e 

to M = [..Jj~]' Mj, by letting e be + 1 on the indices of M+..+, and 

- 1 on the indices of M~,+I. (Note that M++, fq MT.+, = O since 

/3+ A/3- = O. Also M.,+, A M, = 0 for 1 _-< j <_- m, since M~+, C 
V C S',  while Mj C (-J~T. U~, and S'  f3 U~ = 0 for all 1 _-< j < 

m and i E T*.) If b = 0 ,  then we select in V any sequence 

M,~+, of length L -  m ~, which consists of different elements, 

and extend the sign function e to its indices arbitrarily. Note 
m 

that in this case too iV/,+, does not meet I,.Jj=, Mj. Also, in both 

cases 
I M,,,+, I = L - m "  <- 217"'1L ~"-w" 

by (4.8). 
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m + l  
This completes the construction of M = Uj=~ Mj. Recall that each Mj has 

been constructed as a union of sequences. Let us assume that the indices of those 

sequences are disjoint, and are so ordered that M itself becomes the sequence 

M = {x~}f_, under the same indexing. Set 
L 

(4.42) p` = ~ e (l)3x,. 
/=1  

We shall show that p` is a normal array, of order n, constant 

c(n, IZ*J)=9JT*lZ2rT*lc 

and norm L, w.r.t. {pi}~T', such that q~b ({x~}~,~=_*,)=/3-*, and {x~}~=l C U, which 

will prove Theorem 8. (Clearly, the signs e(1)are  the ones assigned to the indices 

1 <= 1 =< L through the construction.) 

Note first that, by (4.21.1) and (4.41), M = {X~}~<,*L C U. Also, by (4.41), 

q~(lx,}~=+l) =/3 +. If b /Q3  this also implies that for e ( l ) e ( l ' ) = -  1, x , / x , ,  
(since/3" f3/3- = ~).  If b = O the above still holds. Indeed, as the sets Mj,,~_i~=,,+~ 
are mutually disjoint (by (4.21) and (4.21.1)) we may check each of them 

separately. If xz and x,, E M,,+, e( l ) .  e(l ' )  = - 1 implies x~/Xr by (4.41), while if 

x~, x~, E Mj, for some 1 =< j =< rn, this follows from the statement after (4.40). This 

shows that /z satisfies (ar.2), i.e., lip, JI = L. 

To check (ar.3), we have to define the subsets Li of {1,2 . . . . .  L}, i E T*. So fix 

some i ~  T*. For 1 ~ j  _-< m, Mj = U,~T. Mj~, and 

Mj~i~ = I Mj~i) U 2Mini)U 3Mj~i~ 

((4.21) and (4.21.1)). For i~  io, 2Mj~) is a sequence whose elements are the atoms 

of the normal array 2rio ) of order n - 1 w.r.t. {~#,},~T; (by (4.21.2)). If i0 E T*~, let 

L~,/"~ denote the subset of 2M~,  which corresponds to 2%~ by (ar.3). By (4.21.3), 

~Mj,~ consists of the atoms of the double array ~ ,~  and '~m~, of order n -  1, 

~.i.~ be the subsets of the w.r.t. {q~,},~T:, and i. Again, if io~ T*,  let LJj  "~ and /2, o 

index sets of 1%~ and ~ i~  which are guaranteed by (ar.3). 

Note that by (ar.3.1) and (ar.3.1') we have 

(4.43) (Ee( I )&, )o~ , ,~=0 ,  where the summation is taken over l ~  
2 j , i  l , j , i  " 1 , i , i  L~; , l ~  L~ o , or l ~  L~0 . Or, equivalently, there exist decom- 

positions 2.~.i ] 2 ;  l . j , i  ~ 1 j i 1 . j . i  ~ 1 j i • E~ o , ~, ,  and E~;' of L~ o2'i'~, L,,, and L~,;" respectively, 

each of which consists of disjoint pairs {/, l'} of indices, such that 

e(1). e(l') = - 1 and q~(x~) = %(xr). 

We can now define L~. The selection of indices in L~ will be so organized that 

they will appear in disjoint pairs {/, l'} with e (I). e (l') = - 1 and q~,(x~) = ~p~(xr). 
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(4.44) 
" l j i  The sets L 2'Li~,,, L ~,,''~ and L ~0', 1 = < j = < m, i E T*, i ~ io will all be 

contained in L~,. Note that the pairings E~i£,Ji E i0'l'/i and E'~,,;' of 

these sets (from (4.43)) induce a disjoint pairing on their union, 

since the sets themselves are disjoint, and each pairing consists 

of disjoint pairs by (4.43). 

In addition, L~, will consist of the following indices. 

(4.44.1) 

(4.44.2) 

(4.44.3) 

If x~ E 1Mj(~), i.e., x~ is an atom of either l])j(/O ) o r  ~ ~i~,), then in 

each case there exists, by Definition (4.2) of a double array 

w.r.t. {q~,},~r,~, and i,, (and (4.6) in particular), some atom x, of 

the other array, with e(l). e(l') = - 1 and q~(xt) = ¢~,(x~,). Let 

D{,, denote the collection of all these pairs {l, l'}. Note that their 

union i s '  * ' * Mj~,). So we add Mit~: to L~,. Clearly, the pairs in D~,, 

are mutually disjoint, and by (4.21.1) they are also distinct from 

the pairs which have already been selected. 

If xs E 2Mjt~,) for some 2 =< j =< m, then by (4.36) there exists 

s o m e  I'E2Nj_,.u,,)so that s ( l ) e ( l ' )=-1  and ¢~,(x,)= q~,(x~.), 

where xt, E Mj_ ~,~ is the element with index l' (cf. the statement 

preceding (4.37)). Let G{o denote the collection of all these 

pairs. We add the union of G{,, (i.e., ~ * Mj(~,~ U 2Nj_,~,)) to L~,. Note 

that this set is disjoint from the ones selected earlier; indeed, for 
the elements of 2 , Mj~,) this follows from (4.21.1), while for 
I E 2Nj ,~0 (actually for l E N~_~c~)) we have: l is an element of 

Mj*_~, and thus l ~ Mj*~,(~) for some i E T*. By (4.25) and (4.26) 

we have that i,, = ~-(1)ff {i} U o-(I) (cf. also (4.23) and (4.24)). 

Thus, l cannot be an element of the sets that have been assigned 

earlier to L~, since by (4.44) and (4.44.1), for each l in one of 

these sets, either io~o(l)  (for l in L ~,;~-'~, L ~ol~ ,~. and L- l~-~ ~ o  ' ) or 

i = io (for IMp-~,~). 

If x~ E 3M/~,), for some 2 < j < m, then by (4.37) there exists 

some l ' ~  3N i ,~,1 with e (1)e ( l ' )=  - 1  and ¢~,(x~)= ¢~(x~,), where 

x~,E MI~_I is the element with index l'. Let H~,, denote the 

collection of all those pairs {l, l'}. Their union 3 M ~  U ~ ~(~ is 

added to L~o. Clearly, H{,, consists of disjoint pairs, and the same 

argument as in (4.44.2) shows that ~M~'~,~U3Nj_~(~ does not 

contain any of the indices which have been selected earlier. 
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(4.44.4) Finally, if 1 ~'N~(~) for some l_ -< j=  < m, then by (4.28) there 

exists some l ' ~  1N~(~,)with e(1)e( l ' )= - 1  and q%(x;)= ~o~,(xc). 

Let I{,, denote  the collection of all these pairs. We add its union 
~N~(~,) to L#,. As in (4.44.2) and (4.44.3), the definition (4.26) of 

N(~,), (4.25) and (4.24) show that the elements of ~N;(~) have not 

been selected earlier in the construction of L .  

This completes the selection of L~,. It follows from (4.44) and (4.44.r), 

E;,~ , E ; ; ' ,  E~,;', Gi~,, D~,, H;,, and Iio 1 < r = 4, that the pairing of L~, induced by 2.u , ;~ ~ ~;~ 1 ; ~ 

is disjoint, and also satisfies e( l )e( l ' )  = - 1 and ~,(x~) = p~(x~.) for every pair 

{l, l'} in this deomposi t ion,  and (at.3.1) follows. 

We still have to check (ar.3.2) and (ar.N). 

For I_-<I=<L let 

(4.45) ~(l) = {i" i ~ T* , l  ~ L } .  

(We shall preserve the letter o- for the corresponding sets in the arrays 2~,jo ), 

l ujl~ and ~kj~; as in (4.24), we shall also make the following convention: if 

1 E U ~ r . - '  * (i.e., an an Mj(o l is not index of atom in some array of order  n - 1) 

then we put (r(1)= ~3.) 

We claim that the following holds: 

(4.46) Let I<=I<-<_L. Then a ( 1 ) C ~ ( l ) ,  l~(/)l<lo-(l)l+2, and if 

l E M* for some 2=<j =< m - 1 then I~¢(l)l = I cr(1)l+2. 

Indeed,  let io E o'(l). The corresponding xt is then an atom of some 2~,w~, l vj,) 

or l~Jo~, with i / i o  (since those are arrays w.r.t. {q~,},~T; and i ~  T*). Then by the 
2 j i  I j i  I,j,i L~,;" and be an one definition of L ~,;', /~,,, , l will e lement  of of these sets, and by 

(4.44) l E L~,, i.e., io E ~:(l). Hence  or(1) C ~:(1). From the above it also follows 

that if ioE ~(1)\o'(l), then l must be an element  of one of the pairs in D{,,, G{,,, 
H{o, or I{,. But this can occur for at most 2 values of io. Indeed,  assume, e.g., that 

l E M~ for some 1 _-< j =< m. In (4.44.r), 1 _-< r =< 4, we have defined D{o, G{°, H{,,, 

and I{,, as pairs {l, l'}. In order  to be an element  in one of these pairs, l must 
I * 2 * 3 , 1 3 satisfy ei ther  l E Mi(~,~ U Mj(~,~ U M;c~,~ U Ni(~) or l ~ 2Nj~,) U Nt(~,). (The second 

possibility follows from (4.44.2) and (4.44.3), when l is actually the " / " '  in the 
1+1 1 * 2 * 3 * construction of G{,, +~ and H~,, .) But Mj(~o, Mj(~ and Mj(~,) are mutually disjoint 

(by (4.21.1)) and such are the sets ~Nj(~,), -~ * 3 NjI~ and Nj(~,)too (by (4.26), (4.28), 

(4.31) and (4.32)), hence no l E M* can satisfy the above for more than two 

values of i,,, and it follows that I ~(l)l _-< I o'(/)[ + 2. Moreover,  f rom the above and 

the fact that both ' * { Mj<o},:~.~.3.;+~-* and { Nj(i)}t=l,2,3,  iET* a r e  decomposit ions of M * ,  
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it follows that if 1 E M~ for some 2 =< j _-< m - 1, then actually [ £(/)[ = I o-(1)l + 2, 

since in this case (cf. (4.44.r), 1 _<-r =< 4) 1 must satisfy the above condition for 

two values of i0. This proves (4.46). 

We are now ready to prove (at.3.2) for g. By (4.46) and the induction 

hypothesis [£(1)1 --< [~r(/)l+ 2 _-< 2(n - 1) + 2 = 2n. We also wish to estimate a 

lower bound for the cardinality of the set E = { I : I < I _ - < L : [ ~ : ( 1 ) [ = 2 n } ;  

instead we shall estimate an upper bound for the cardinality of its complement 

E c. By (4.46) we have 

E ~ C M ~ U M . U  , ( ' - 1  ) M~+I U U U 3Mpu) 
j = 2  i E T *  

/ / 2 * U l ~  U U (IM~nU M j c o ) : [ c r ( l ) [ < 2 ( n - 1 )  . 
] = 2  l E T *  

This follows from the fact that for any other l, I~r(1)l = 2n - 2, and 1 E M* for 

some 2=<j =< m -  1, and thus, by (4.46), ]~(l)[ =2n.  Recall the following 

estimates: 
• - * (by (4.20)), IM,  I - [ M , . I = m  "-~ 

[M*+I [ ~ 2 T'p L <"-~>/" (by (4.41) (the last line there) and (4.48)), 

3 * I Mju~t<=3[T*lZIT*%m "-2 (by (4.37) and (4.34)), 

and hence also 

I r U U 3Mj,~) < m IT* 13[ T* 12'T*Icm" z = 31 T* 122'r*lcm "-' 
1=2 i C T *  

1 * 2 -~ I{l : l E Mj(,)U M;,,, Icr(l)[ < 2(n - 1)} I -<_ 3cm "-2. 

(This follows from the induction hypothesis, and (ar.3.2) when applied to 2 j(~), 

'~'.n and '6,~. Note that the norm of each of these arrays is -< m"-l.) Thus we 

also have 

( Mjc. U ~M?.,):I ~(1)l < 2(n - 1) / E U  U ' * 
]~2 i E T *  

< m  . I T * 1 3 c m " - ' = 3 [ T * l c m  "-1 

Adding all this together we obtain 

IE~ I_- < m" 1_~ m" ' + 21T*J L ("-',/" + 3[ T* 1: 21T*%m "-' +31 T* I cm ° ' 

(4.47) < 9IT* t~-21T*IcL ("-Iv" 

= c(n, [ T* l)L ~"-'',". 
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(Recall that m "-1 _-< L~"-w".) This proves tha t / z  satisfies (ar.3.2), and completes 

the proof that /z  is an array of order n and constant  c(n, I T* t), w.r.t. {~}~r*.  To 

conclude the proof of Theorem 8, we still have to show tha t /z  is normal,  i.e., that 

(ar.N) is satisfied too. So, let ~: be a subset of T*, and we wish to estimate 

lye,:,,) ,e(l)l. Note first that by (ar.3.2), if 1 ~ t # 2 n  then 

~, e(l) <--c(n. lT*l)L'" 1,,.. 
1:,~(I)=~ 

(Indeed, if > 2n then the sum is over the empty set, while if t~[ < 2n then the 

sum is over a set of cardinality _-< c(n, t T ' l )  L<"-w".) So, let £ c T* with [~[ = 2n 

be given. 

(4.48) ~ admits (2f)<lT*12 representations of the form ~:= 

o- U {/0} U {il}, with [~ t = 2(n - 1). 

We also have 

(4.49) ~:e~* e(1) = ,=~,~i,, ~ - ,  
to-I=2(. 1) l CLi0f) L~ I 

l~M*j 

Indeed,  it follows from (4.44) and (4.44.r), 1 _-< r _-< 4, and (4.46) (cf. the proof 

of (4.46)) that if l E M~' U M *  U M*+I or [ o-(/)l < 2(n - 1) then [~(l)[ =< 2n - 1. 
Let  us examine the set 

{l : l E M * ,  l @ L~, O L~,, or(l) = o'} (where [o-[ = 2(n - 1)). 

Recall that in order to be an element  of L~ (for i f f  o-(1)), l E M* must satisfy 
either l ~ 1M;~) U -'M~o U 3A4j~n U INj,) or l E 2N, o U 3/Vj,). 

Note also that if or(1) = 2(n - 1) then l f f  3N~ o. Thus, l must satisfy the above 
with b o t h i = i o a n d i = i l ,  and since both the ' * '  ' ' M,o  s and the Nj,) s are disjoint 
for different values of i, we conclude that for l E M~ with Icr(1)l =2(n-  1), l 
must be an element  of both i , 2 3 ( M j ~  U -'Mj~) and (N,~,) U Nj<~o). Recall that by 
(4.26) 

Na, 0 : r ~(i,), 

and for l E IMj~) U 2M~), r ( l )  = ~({io} U cr(/)). Thus, the conditions l E 'Mj~) U 

2 M ~  and g ( 1 ) =  ~ actually determine the value of L, such that l E N,~,). It 
follows that for some fixed L ~r, io and L, the sum 

I C M ~  
I~LioNLi 1 

e( l )  = 0 if ÷({io} U o - ) #  i~, 
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and 

,~, e(1)= E 
I:tr(I)=Cr I EI MI(io)LJ2 M~(iO) 

IEM*i o-( l )=a 
IELioNLi  1 

This last sum can be decomposed as 

if ~({i0} U or) = i,. 

~ =  e(1)+ ~ e ( l )+  ~ e(1). 
l: o" /:o-(/)~o" I:o'(l)=o- 
l ~2 Ml*(i O ) xl Esupp viliO ) Xl ~supp l fii(io ) 

Recall that 2vjc~, l vj{~) and 19~) are all normal arrays, of order n - 1 and norm 

=< m"-l, and thus, from an application of (ar.N) to these arrays, it follows that 

the modulus of each one of the last three sums does not exceed cm "-2. Hence 

I ~ e(1) and also ~ e(l) l 
o-(/)=~- I~M*i 

ICLioNLi  1 

are bounded by 3cm"-2. From the fact that for a given ] there are at most [ T*I 

Mjc,~'s, and from (4.49) (and (4.48)), it follows that 

z 
l:~j(I)= ~j 

<__lT*I'-mlT*13cm "-2 

=31T*13cm ~-1 

<c(n, IT*])L ~"-w~. 

This concludes the verification of (ar.N) for/x, and also the proof of Theorem 

8. 
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