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ABSTRACT

1t is proved that a compact metric space X is n-dimensional (n = 2) if and only
if there exist 2n + 1 functions ¢,, @, . . ., @1, in C(X) so that each f € C(X) is
representable as

2n+1

f)= 3 gl@(x) withg €CR), 1=i=2n+1.

i=1

Equivalently, it is shown that dim X = n if and only if C(X) is the algebraic sum
of 2n + 1 subalgebras, each of which is isomorphic to C(0, 1). The properties of
families {¢, }>2;" which satisfy the above are studied, and they are characterized

i=1

in terms of their ability to separate the points of X in some strong sense.

§1. Introduction

By a classical result of Menger and Nobeling, every separable metric space of
topological dimension n can be imbedded in the (2n + 1)-dimensional Euclidean
space R*""'. However, the fact that a given space X imbeds into R**"' does not
determine the dimension of X. In this article we study a special type of
imbeddings, which characterize the dimension of compact metric spaces.

Our starting point is the well-known superposition theorem of Kolmogorov
[4]. It says that for X = I" (n = 2) there exist 2n + 1 functions {¢: }:21' C C(X) of
the form

(1) (X %)= ¢(%), @, €CU), 1=i=2n+1, 1=j=n
i=1
such that each f € C(X) admits a representation

1.2) f(x)=2:21 g (g (x)), x=(X,X...,%)EX, g€C(R).
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(I" (n=1) is the n-cube [0,1]". Throughout this article X, Y will denote
compact metric spaces, unless otherwise stated. C(X) is the Banach space of real
valued continuous functions on (X).) This remarkable theorem, which solved
(negatively) Hilbert’s 13-th problem, can be improved and generalized in several
directions (see, e.g., [6] and [9]). We shall be interested in its extension to general
compact metric spaces. To state it efficiently we introduce the following
notation:

DerINITION 1.1, Let F={@}-, be a family of continuous functions,
¢.: X— Y, 1=i=k Fissaid to be a basic family, if each f € C(X) admits a
representation

k
(13) f(x)= 2 g(e:(x). x€EX, withgeC(Y), 1=isk

Thus, the family of functions {¢:};2;' in Kolmogorov’s theorem is a basic
family. Note that it has the additional structure (1.1), but even if (1.1) is ignored
Kolmogorov’s theorem remains highly nontrivial. Given a compact metric space
X, we shall be interested in basic families F on X, with FC C(X). If dim X =n
(dim X is the topological dimension of X) then by applying the
Menger-Nobeling theorem, and then Kolmogorov’s theorem, we obtain a basic
family F C C(X) with |F|= cardinality of F =2(2n +1)+1=4n +3.

Ostrand [7] improved this result. In particular he proved:

(1.4) If dim X = n (n = 0) then there exists
a basic family F C C(X) with |F|=2n + 1.

It is clear that the number 2n +1 in (1.4) is the best possible. (There are
n-dimensional spaces which do not imbed in R*".) But it turns out that it is the
optimal in a much stronger sense; it cannot be reduced for any n-dimensional
space X, not even when X =1I" (and, in particular, the number 2n +1 in
Kolmogorov’s theorem cannot be reduced.) This is the main result of this article.

THEOREM 1. Let X be a compact metric space and n a positive integer. Then
dim X = n if and only if there exists a basic family F C C(X) with |F|=2n + 1.

Theorem 1 can be interpreted in several ways. Let us examine some.

If F={@}-CC(X) is basic, then the mapping ¢ from X to R* whose
coordinates are the elements of F is an imbedding, which also satisfies the
following: any f € C(¢(X)) can be represented as

(1.5) f(t,,zz,..‘,tk)=;g,~(ti), (thytoy..., k) E 0(X), g € C(R).
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Thus, Theorem 1 is equivalent to the following:

THEOREM 2. dim X =n (n=1) if and only if there exists an imbedding
¢ : X — R*"" which satisfies (1.5).

For a fixed ¢ € C(X) the collection

(1.6) A ={g(p(x)): g € C(R)}

is a closed subalgebra of C(X), which contains the constant functions and is
generated by one element. Conversely, every subalgebra A of C(X) with the
above-mentioned properties is of the form (1.6), with some ¢ € C(X). Hence,
the following theorem is equivalent to Theorem 1.

THEOREM 3. dim X = n (n 2 1) if and only if C(X) is the (algebraic) sum of
2n + 1 subalgebras, each of which contains the constants and is generated by one
element.

Theorem 3 characterizes dim X in terms of the algebra structure of C(X). We
wish to mention some additional facts concerning this matter:
In [12}, the following extension of (1.4) has been proved.

(L.7) Let dim X = n (n 2 0). There exist n spaces Y;, with dim Y, =
1, 1=j = n, continuous mappings ¢;: X—Y,, 1=j=n, and
2n +1 functions {¢;};1' C C(X), such that for every 0= k = n,
every collection of k of the ;’s and 2(n — k)+ 1 of the ¢’s
forms a basic family.

Moreover, the Y;’s and ;’s can be so chosen that, with the exception of a set
of first category in C(X)""', any (2n + 1)-tuple {¢;}:}" of elements in C(X) will
satisfy the above.

Note that (1.4) follows from (1.7) by taking k = 0. In [12] it has been proved
that the numbers k and 2(n — k)+ 1 in (1.7) are the best possible for n = 6. By
the results of this article, the restriction n = 6 in [12] can be removed. Let {y;}/-,
and {@.};21" be as in (1.7), and consider the following subalgebras of C(X):

A ={g(g:(x)): g EC(R)}, l=i=2n+1;

(18) B = {h(h(x): hEC(Y,), 15j=n

(1.7) says that the sum of any k of the B;’s and any 2(n — k)+1 of the A,’s is
C(X). Clearly, both the A;’s and the B;’s contain the constant functions, and the
A;’s are generated by one element. The B;’s need not be generated by one
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element. Still, applying the following theorem of Katetov [3], the B;’s can be
characterized in terms of their generators.

A subalgebra B of C(X) is called analytic if B is closed, if 1 € B, and if for
f € C(X), f° € B implies that f € B.

A family V C C(X) is an analytic generator of C(X), if the smallest analytic
subalgebra of C(X) which contains V is C(X). The analytic dimension of C(X)
is the smallest cardinality of an analytic generator. Katetov proved

(1.9) dim X = analytic dimension of C(X).

(For example: if A={0,1}" is the Cantor set, then the analytic dimension of
C(4) is 0, i.e., the only analytic subalgebra of C(A) is C(4) itself. If T denotes
the circle, then the analytic dimension of C(T) is one, since V = {sint} is an
analytic generator. The reader may easily verify these facts.)

From (1.7), (1.8), and (1.9) it follows that the B;’s in (1.8) are analytically
generated by one element. Hence the following stronger version of Theorem 3
holds.

THEOREM 4. dim X =n (n=1) if and only if there exist subalgebras A,
1=i=2n+1,and B;, 1 =j = n, of C(X), which contain the constants, such that
the A,’s are generated by one element, and the B;'s are analytically generated by
one element, so that for each 0 = k = n, the algebraic sum of any k of the B;’s and
any 2(n—k)+1 of the A’’s is C(X).

Obviously, a basic family separates the points of X, and simple examples show
that the converse statement is false. It is therefore natural to study the stronger
separation properties that basic families must share. A simple duality argument
reveals those properties. This duality approach turns out to be highly significant.
It exposes the real nature of basic families on one hand, and provides us with the
main tool for the proof of Theorem 1 on the other.

Let F={@} be a family of continuous functions on X, ¢ : X—Y,
1=i=k Let Y=U., Y denote the disjoint union of the Y;’s. Consider the
bounded linear operator T : C(Y)—> C(X) defined by

k
T(g,8:- -, 8)(x)= Z} glp(x), XEX (8.8s..-,&)EC(Y)
(e.,g €C(Y). 1=i=k).
Clearly, F is basic if and only if T maps C(Y) onto C(X). This occurs if and
only if T* is an isomorphism, i.e., if and only if there exists some constant y >0

such that |[T*w||Z y|u| for all u € C(X)*. (Consult [1] for unexplained
notation and facts concerning the duality argument.)
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A routine check shows that for a Borel measure p € C(X)*, T u =
Simee:', where poe;' is the measure of Y, defined by poe:'(u)=
p(@i'(w)), uC Y, a Borel set. Thus

(1.10) F is basic if and only if there exists a constant 0<< A =1, such
that for every pu € C(X)*, |[po¢ '|=Z A | x| holds for some
¢ €EF

Let us consider now families F which satisfy the conclusion of (1.10) for
measures u € C(X)*, with a finite support (i.e., u =2, g;8,, where &, x € X,
is the Dirac measure with mass 1 at x, and g, € R;note that we ™' =37, ;04 (x)-

DEFINITION 1.2. Let X and {Y;}i, be sets, and let ¢; : X — Y, be functions.
F ={¢:}{-, is said to be a uniformly separating family (u.sf. in short) if there
exists a constant 0 < A =1 such that for each p € [(X), [xe¢||= A ||| holds
for some ¢ € F.

REMARKS. Tt is easy to check that if in Definition 1.2 we replace “each
p € L(X)” by “each p €1,(X) with a finite support” (i.e., p =Z% a8,
a; €ER), or even by “each u =37,446, €1(X) with 4; an integer, and
w(X)=0" we still get an equivalent definition. By applying a duality argument
similar to the one used above (cf. [10]), one can show that

(1.11) Fisausf. if and only if each f & 1.(X) admits a representation

fR)=2 sle k),  xEX gELY)

(where [.(X) is the Banach space of bounded real valued
functions on X).

Note that a u.s.f. F on X also satisfies the following: for any two disjoint finite
subsets A and B of X, there exists some ¢ € F so that

le(A)N e(B)|=:(1-A)(JA|+]|B]),

ie., if ANB = then ¢(A)N ¢(B) is uniformly small. It was this property
which motivated the choice of the terminology “uniformly separating family.”
Thus, a basic family is a u.s.f. We do not know whether the converse statement
(when applied to a family of continuous functions on a compact metric space) is
true in general. (If F consists of at most two functions then it is true; cf. [10].)
We present some examples to illustrate this concept. In the first four X is-a
subset of I°, while F consists of the two functions ¢i(x,y)=x, ¢(x,y)=y.
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ExampLE 1. X is the boundary of a rectangle with sides parallel to the axes
(e.g. X*0, 1} x TUTIx{0,1}). Then F is not a us.f. on X (e.g., for p = 8¢n+
6(1,1)— 8(1_())_ 6(0‘1), M ° (P:] = O for l = 1, 2)

ExampLe 2. X is the triangle with vertices at (0,0), (3, 0), and (1,1). The
reader may easily verify that for all 0# u € C(X)*, either poe, #0 or
wo s #0,butstill Fisnot a us.f. on X. (Actually F is not a u.s.f. on any closed
curve in I*; cf. [10].)

ExaMpLE 3. X ={}XTUIX{N{G )} Fis a usf. on X with A =3.
ExAMPLE 4. X ={}XTUIX{}. fis still a usf. on X with A =3.

Exampie 5. Let X denote the circle. Let {A,};-, be three disjoint arcs in X,
and let B; = X\ A; denote the complementary arcs. Let F = {¢;};-; C C(X) be
any family such that ¢; is one-to-one on B;, 1 =i = 3. Then F is basic on X with

=3 (cf. [11]).

Note that in all the examples dim X = 1. Examples in higher dimensions are
much more complicated.

The following theorem, when combined with (1.4), provides a stronger version
of Theorem 1.

THEOREM 5. IfdimX =n=2,and FC C(X)isau.s.f., then |F|=2n +1.

We prove Theorem 5 in the next section. There we shall formulate two
theorems, and show how Theorem 5 follows from them. Both theorems, besides
their role in the proof, will provide us with information on the structure of u.s.f.
in general. The theorems will be proved in subsequent sections.

Note that the cases n =2,3,4, of Theorem 5 have been proved in {10].
However, the proof presented there cannot be pushed through to larger values
of n. We shall comment on this point again in Section 3.

Finally, we remark that our proof of Theorem 5 (or Theorem 1) cannot be
shortened or simplified by narrowing the class of spaces to which it applies.
Actually, the proof of Theorem 5 for the single space X = I" (which is the most
interesting and important case) requires the same machinery and dimension
theoretic arguments as the proof of the general case.

§2. Proof of Theorem 5
For a compact metric space X set

@.1) «(X)=min{|F|: FC C(X), Faus.f}



Vol. 50, 1985 SUPERPOSITION OF FUNCTIONS 19

and for n = 0 define
2.2) a, = min{a(X):dim X = n}.

Thus, by (1.4), a, =2n +1 for n Z0; and Theorem 5 claims that for n =2,
a, =2n +1. (Obviously a, =1.) Let us first remark that

2.3) forn=z2, a>a.=n+1.

Proor. Fix some n =2, and assume that a, < n + 1. Thus, there exists some
X with dimX =n, and F={¢}=2, CC(X) a usf. The mapping ¢ =
(1, 2, .-, 0. ): X — R" is then an imbedding, and hence (as dim X = n) we
must have «, = n, and also, since a subset of R" is n-dimensional if and only if it
has a nonempty interior (cf. [2]) the interior of ¢ (X) in R" is nonempty. It
follows that ¢ (X) contains some r-cube; and to save notation, we may assume
without loss of generality that [ —1,1]" C ¢(X). Let &€ = (&1, €2,..., &.), where
g; €{= 1}, denote the vertices of [ — 1, 1]". For each such ¢, let s(e) =1II}_, ;. Set
also x. = ¢~ '(¢), and let u € [,(X) be defined by p = 2. 5(e)8.,. Then || u || =2",
and it is easy to verify that woe;' =0 for all 1 =i = n, which contradicts the
assumption that F is a u.s.f. Hence o, 2 n + 1.

Assume now that for some n =2, a,.; = a.. It follows that there exist some X
with dim X = n +1, and F = {¢:}iz: C C(X) a u.s.f. The function ¢, maps X into
R and hence (see (3.2) in §3 of this article) there exists some t € R such that
dim ¢7'(t) = n. Obviously, F' = {¢;}{z, is then a u.s.f. on ¢ '(t), and | F'| = @, — 1
which contradicts the definition of .

Our proof that for n =2, a, =2n +1, consists of two major steps. Both of
these steps reveal some pattern of u.s.f. in general. To gain some intuition
towards the first step, consider the space X = I’, and a basic family F C C(X),
which consists of continuously differentiable functions, and which is minimal in
the sense that no F'G F is basic on any X' C X with nonempty interior. From
elementary calculus it then follows that every pair of elements of F, when
regarded as a mapping from X into R’ maps X to a subset of R* with a
nonempty interior. This is no longer true without the differentiability assump-
tion. In the first step we prove that this is still the case with “many” of the
n-tuples of elements of F. To prove that a, = 2n is impossible, we have to show
that, given F ={g¢};2, C C(X) where dim X = n, there exists u € [,(X) with
flie o @' || small with respect to ||p | for all ¢; €F.

Apparently, the existence of a “Cartesian product structure” in “many” of the
n-tuples of elements of F (i.e., the n-tuples which by the first step map X to a set
with a nonempty interior in R") is useful when such u € [;(X) are to be
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constructed. (A simple example which illustrates this fact is the proof that
@, = n+1in (2.3).) In the second step we show that this is really the case. We
shall introduce now the necessary terminology, and state two theorems:
Theorem 6 (for the first step) and Theorem 7 (for the second). Then we shall
deduce Theorems 5 from these theorems. Theorems 6 and 7 will be proved in the
following sections.

DerFINITION 2.1. Let n =1 be an integer, let 8 = {B;}i-: be a strictly increas-
ing sequence of positive integers, and let K be a finite set. The concept of a tree
T of order n and type B of subsets of K will be defined by induction on n.

T is a tree of order 1 and type B = {B:} of subsets of K, if there exists a subset
T* of K, with | T*|= B, such that T ={{i}: i € T*} (i.e., T is a family of subsets
of K, of cardinality one each, and T contains at least 3, elements).

Assume that a tree of order r and type B of subsets of K has been defined for
1=r=n-1.Tisatree of order n and type B ={B,..., B.} of subsets of K, if
there exists a subset T* C K, with | T*| = B,, such that to each i € T*, there
corresponds a tree T; of order n — 1 and type {B1, ..., B.—i} of subsets of T*\{i},
and T={{i}Ua:a€T,i€ T}

Note that a tree T of order n and type 8 of subsets of K is a family of subsets
of K (actually of T*), of cardinality n each. One can look upon the elements of
T as “branches” of a tree, which has the elements of T* in its basis, each i € T*
branches to at least 8,-, elements of T*\{i}, each such element j branches to at
least B,_, elements of T%\{j}, and so on. (The branches are considered here as
sets — not ordered sets — and hence different branches may define the same
element of T.)

DerniTION 2.2. Let X and Y be topological spaces, and let f: X — Y be
continuous. f is an interior function, if for each nonempty open subset U of X,
f(U) has a nonempty interior in Y.

DerNiTioN 2.3. Let X and Y, 1 =i =k, be sets and ¢; : X — Y; functions.
For a subset a of {1,2,...,k} let ¢, : X > Ilic. Y: be defined by: (g.(x)) =
o(x), xEX iEa.

THEOREM 6. Let X be an n-dimensional compact metric space (n = 2) and let
{g:}i<1 C C(X) be a u.s.f. on X.

Then there exists an n-dimensional closed subset X' of X and a tree T of order n
and type {2, as,...,a.} of subsets of {1,2,...,k}, such that for all a €T,
¢, : X'— R" is interior.
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REMARK. Let us call a tree which satisfies the conclusion of Theorem 6, an
interior tree with respect to F ={g:}{-,. Since in Theorem 5 we shall prove that
a, =2n + 1 for n =2, it follows from Theorem 6 that each real valued u.s.f. F on
an n-dimensional compact metric space admits an interior tree T of order n and
type {2,5,7,...,2n—1,2n + 1}.

This result can be slightly improved; it turns out that each such u.s.f. admits an
interior tree of order n and type {3,5,7,...,2n + 1} = {21 + 1}/-.. The proof of
this fact requires more delicate arguments than the arguments needed for the
proof of Theorem 6, and since we do not need it, we shall not present it here.
(We refer to the proof of Theorem 5 (case (ii)) of [12], in which the additional
arguments which are needed in order to obtain a tree of type {3,5,...,2n + 1}
are presented.)

The type {3,5,...,2n + 1} cannot be improved. Indeed, let X = I*. Then
dim X =2, and by (1.7), there exists a u.s.f. F on X, F ={¢, ¢, ¢3, ¥}, with
e €C(X),i=1,2,3, and ¢ : X — Y, where dim Y = 1. Hence there exists a
ws.f {y:}i-; C C(Y)on Y so that for all a C{1,2,3} (a # D), dim ¢, (Y) = 1. (To
see this one needs the stronger version of (1.7), i.e., that up to a set of first
category, all triples of elements of C(Y) form a u.s.f.) Let , € C(X) be defined
by w(x)=¢:W(x)), i=1,2,3. One checks easily that F'=
{@1, @2, @3t U {1, 72, 3} 1s a u.s.f. on X. Moreover, F' does not admit an interior
tree of type {4,5} (and order 2). This follows from the fact that for a = {i,j},
1=i<j=3, .(X)=¢.(Y), and hence dim7,(X)=dim ¢, (Y)=1, ie., the
interior of 7,(X) in R* is empty.

We turn now to the second step. First we introduce the concept of an array.

DEFINITION 2.4. Let X and Y, i € T* be sets, and let F={@};cr- be a
family of functions, ¢; : X — Y;, where T¥ is a finite set of indices. Let n be a
positive integer, and ¢ > 0.

A measure p € I,(X) is said to be an array of order n and constant ¢, with
respect to F, if the following holds:

(ar.1) # can be represented as u =ZL, £(j)6,, where e(j)E{=1}
and {x;}j~; C X is a finite sequence.

@2)  Jul=m

(ar.3) For each i € T*, there exists a subset L; of [m] ={1,2,..., m},
so that:

(ar3.1) i =Ze, £(j)8,, satisfies w0, =0, i € T*.
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(ar.3.2)  If for j €[m] we set
o(fy={i:ieT*jEL}
then |o(j)|=2n and
[{j:j€lm], loG)I=2n}z|pl—cllp|""
Note that (ar.2) is equivalent to:
(ar.2") If x; = x;, then €(ji) = £(j»)
and also that (ar.3.1) is equivalent to:

(ar.3.1') There exists a decomposition E; of L, into disjoint pairs
E, ={{j,j’}} such that, for {j,jYE€EE;, () ()= —1 and
@i (%) = ¢ (x;) hold.

The verification of these facts are left to the reader. The usefulness of arrays to
our goal is reflected in the following proposition:

ProposiTiON 2.1. Let p be an array of order n and constant ¢ w.rt. F=
{oher- If | T*|=2n, then for all i€ T, oo /pli=cllpf™.

Proofr. If |T*|=2n then by (ar.3.2)
izj€lmlo()=THzlpl-clul"

and also, if o(j) = T*, then j € L, for all i € T*; so, in particular, for all i € T*,
L D{j:o()=T*and thus|L|Z||u] - c || |""". Note also that, by (ar.2),

”:‘;"“ = H’; 8(]')3,,. = |Li [ = ”M “ —c ““ “(n—l)/n,

and
“:U* - I{«” = H ; 8(])5xj =c ”,u “(nﬂ)/,..
JElmML;
Hence by (ar.3.1)
e o =l = o 7"+ o0 I =1 = e 07 s = wl = c o

and the proposition follows.
The following theorem provides sufficient conditions for the existence of
arrays.

THEOREM 7. Let T be a tree of order n (n = 2) and type {2,4,6,...,2n}. Let X
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be a topological space, and let Y;, i € T*, be topological spaces in which each
nonempty open set contains two disjoint nonempty open sets. Let F ={¢;};er- be a
family of continuous functions, ¢; : X = Y:, so thatforalla € T, ¢, : X > 1lic. Y,
is interior.

Then there exists a constant ¢ = c(n,| T*|) (which depends only on n and | T*|)
such that for every integer L = 1, there exists in X an array w of order n, norm L
and constant ¢, w.r.t. F.

We proceed now to the proof of Theorem 5. We shall show, by induction on
n =2, that o, =2n + 1. Recall that by (2.3), a,.1 > @, = n + 1, and that a, =
2n +1.

ProOOF OF THEOREM 5. The case n = 2. Let us see first that a. = 4. If not, then
there exists a two-dimensional compact metric space X, and a usf. F=
{@:}i=; C C(X). Hence, by Theorem 6, there exists a 2-dimensional compact
subset X’ of X, and an interior tree of order 2 and type {2,3} w.r.t. F. Thus, for
all a C{1,2,3} with la|=2, ¢,:X'— R’ is interior. Set ¢,= ¢;. Then F =
{@:}i-1, and one checks easily that T = {{1,2}, {1, 3}, {2, 3}, {4, 1}, {4,2}} is a tree of
order 2, and type {2,4}, with | T*|=4, w.r.t. which F = {¢,}{-, is interior (on X").

From Theorem 7 it now follows that there exists a constant ¢ such that X'
contains an array u, of order 2, of arbitrary norm k, and constant ¢ (independent
of k) w.r.t. F. From Proposition 2.1, it follows that | e ¢/ '[|/||n | = ck ™", for all
ieT*={1,2,3,4}, i.e,, F is not a u.s.f. Hence a>Z=4.

Assume that a, =4. Then, again, let F ={¢}{-; C C(X) be a u.s.f. on some
2-dimensional compact metric space X. By Theorem 6, there exists a tree T, of
order 2 and type {2, 4}, of subsets of {1,2,3, 4} which is interior w.r.t. F on some
X' C X, and clearly | T*|=4. Applying Theorem 7, and Proposition 2.1 once
again, we obtain a contradiction. Hence . =75.

Assume now that o, =2r+1 for 2=r=n-1. Then 2n+1zZa, > a, =
2(n—1)+1=2n-1, i.e., a, =2n, and we have to show that a, =2n +1. So,
assume «, = 2n, and let X be an n-dimensional compact metric space, with
F={g}2 CC(X)a us.f.

By Theorem 6, there exists an n-dimensional subset X' of X, and a tree T of
order n and type {2,5,7,...,2n —1,2n} of subsets of {1,2,...,2n}, which is
interior w.r.t. F on X'. Clearly, T is also of type {2,4,6,...,2n —2,2n}, and
| T*| =2n.

Applying Theorem 7, and Proposition 2.1, we obtain a measure ¢ on X with
Nweooi |/l = ck ™" forall 1 =i =2n where k is arbitrary, and ¢ independent
of k, which contradicts the assumption that F is a u.s.f.
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§3. Proof of Theorem 6

We shall first prove the following weaker version of Theorem 6.

THEOREM 6'. Let F ={¢@:}/-1 C C(X) be a u.s.f. on an n-dimensional compact
metric space X (n Z2).

Then there exists a tree T of order n and type {2, as, as, ..., a.} of subsets of
{1,2,...,k} such that dimg.(X)=n forall a € T.

ProoF. We shall use induction on n = 2, and begin with the case n = 2. So let
dim X =2 and let F ={¢;};-;C C(X) be a us.f. on X.

Note first that we may assume without loss of generality that F is a minimal
u.s.f. on X in the following sense: no subfamily F' & F is a u.s.f. on any closed
2-dimensional subset X' of X. Indeed, if F'& F is a u.s.f. on some closed
2-dimensional X' C X, then we restrict ourselves to X’ and F' instead of X and
F; if there is still an X" C X" closed dim X" =2, and F"& F' a u.s.f. on X", then
we pass to X" and F". As this procedure must obviously stop after a finite
number of steps, we end up with a 2-dimensional compact subset W of X, and
some G C F which is a minimal u.s.f. on W. So, we shall assume that X = W and
G=F

Recall that an n-dimensional compact metric space X is called n-dimensional
Cantor manifold, if for all W C X closed with dim W =n -2, X\ W is con-
nected. By ([2], Th. VL8, p. 94) each n-dimensional compact metric space
contains some n-dimensional Cantor-manifold. In particular, our X contains a
2-dimensional Cantor-manifold, and hence we may assume without loss of
generality that X itself is such.

Recall also that for a mapping f: X — Y, dim f is defined by

dim f =sup{dim f'(y):y € Y}.

The following lemma, which will be proved at the end of this section, shows
that under our assumptions, for all a C{1,2,...,k}with |a|=k —1, dim ¢, = 0.

LemMMmA 3.1. Let X be an n-dimensional Cantor-manifold, and let F =
{@:}io1 C C(X) be a minimal u.s.f. on X (i.e., no F'S F is a u.s.f. on any closed
n-dimensional subset of X).

Then for each a C{1,2,...,k} with |a|=k ~1, dim ¢, =0.

At this point we wish to recall some facts from dimension theory.

3.2) Hurewicz’s theorem on mappings which lower dimension ([2],
Th.VL7,p.91). Let X and Y be separable metric spaces and let
f: X —Y be a closed mapping. Then dim X =dim Y +dim f.
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Recall that for a topological space X, dc X (the dimension of connectness of
X) is defined by: dc X =z n if no closed subset WC X with dim W =n-2
separates X {cf. [5], p. 164 for more details). Thus, e.g., X is an n-dimensional
Cantor-manifold if X is compact and dim X =dc X = n.

The following follows easily from (3.2) (see [10], Th. 4.19, p. 76 for a proof).

3.3) Corollary of Hurewicz’s Theorem. Under the assumption of
Hurewicz’s Theorem dc X =dc Y +dim f.

Finally, we state the foliowing

3.4) Theorem on dimension of projections. Let W C R™ be compact
with dc W= n. If dim P;(W)=1 for some 1=i=m, then
there exists a subset b of {1,2,..., m}\{i} with |b| =n — 1 such
that dim Py, (W)= n.

Here P, denotes the canonmical coordinate projection of R™ onto R,
bC{1,2,...,m}.

(3.4) is proved in [10] (Th. 4.9, p. 74). Let us mention that the cases n =2,3,4
of Theorem 5 are also proved in [10]. There, the author also conjectured an
extension of (3.4) which could have been used to extend the proof of Theorem 5
in [10] to all n = 2. However, Pixley [8] has shown that the extension of (3.4),
suggested in {10], is false. The course of proof of Theorem 5 in this article, and in
particular the notion of a tree, were introduced to bypass this obstacle.

We can now conclude the proof of the case n =2 of our theorem. We shall
show that, for each 1=i=k, there correspond to indices, j,, j. in
{1,2,..., k}\{i}, such that dim ¢ ;;(X)=dim ¢;;,(X)=2. Note that if we
accomplish this then we are done, since then the tree T with T* ={1,2,..., k},
and T, = {{ji}, {j.}} for i € T*, is of order 2 and type (2, ;) (obviously k = a,),
and forall a €T (ie., a={iji}or a={i}p}, i€ T*) dim g, (X)=2.

So, let 1=i=k Set [k]={1,2,...,k}. Then as F={g}_; is a us.f,
¢y X = R* is a homeomorphism, and thus W = @p(X) is a 2-dimensional
Cantor-manifold in R*. By the minimality of F, Py,(W) = ¢;(X) is a nondegen-
erate interval in R, and hence dim P;;(W)=1. By (3.4) there exists some
jl € [k]\{l} such that dim P{i)U(il)(W) =1. (Note that P{i)u{jl)(W) = QD(,',,‘I;(X).)

Set a =[k]\{j}, and V = ¢,(X)C R, then |a|=k — 1, and by Lemma 3.1,
dim ¢, = 0. Hence by (3.3) dc ¢, (X) = dc X —dim ¢, = 2. Thus, V is a compact
subset of R*™', dc V =22 and dim P;4(V) =dim ¢: (X) = 1. By (3.4) again, there
exists some j, € a\{i}, such that

dim P oy (V) = dim @;(X) =2
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and the case n =2 of the theorem follows.

Assume now that the theorem holds for 2=m=n—-1, and let F=
{@:}i-1 C C(X) be a us.f. on an n-dimensional compact metric space X. An
obbvious reduction (as in the case n =2) allows us to assume that X is an
n-dimensional Cantor-manifold, and that F is a minimal u.s.f. on X. Clearly
k Z a,, and we shall construct a tree T of order n and type (2, as, ..., @.-;, ;) Of
subsets of [k], with T* =[k], such that for all b € T, dim ¢, (X) = n. To do this it
suffices to show that, for each 1 =i =k, there corresponds a tree T; of order
n—1 and type (2, @,...,a,—1) of subsets of {1,2,..., k}\{i} such that for each
a €T, dim¢uu.(X)=n. So let 1=i=k, and to save notation assume that
i = 1. From the minimality of F it follows that ¢,(X) is a closed interval [, 8] in
R, with a < B. For a <t < 3, t separates [a, 8] and hence ¢;'(¢) separates X.
The fact that X is a n-dimensional Cantor-manifold implies that dim ¢, '(¢) =
n—1, and from the minimality of F it follows that actually dim ¢;'(t)=n —1
(since {@:}i=; is a u.s.f. on ¢7'(¢)). Hence, by the induction hypothesis, there
exists a tree Ty(t), of order n—1 and type (2,as,...,as,—1), of subsets of
{2,3,...,k}, such that for all a € Ty(¢). dim ¢. (¢, '(1))=n —1.

For a tree S of order n — 1 and type (2, as, ..., a.-:) of subsets of {2,3,..., k},
set

As={t:a<t<B,dime.(¢i'(t))=n—1forall a €S}

The above argument shows that UsAs ={¢:a <t < B}, since t € Ar. Since
the number of such trees is finite, there exists some tree T) such that Ar, is of
second category in [a, B]. (Note that Ay is not necessarily closed.)

We shall see now that for each a € T, dim @0, (X) = n. So fix some a € T;.
Recall that |a|=n — 1. Let {B;}i-; be a sequence of closed (n — 1)-dimensional
cubes in R® whose interiors form a basis for the topology of R*.

Set

E ={t:t€EAr, B Coler' ()}, Iz

We claim that E, is closed in R, and that A, C U/_, E,. To see that E, is closed,
let {t.}m=1C E; be a sequence, so that &, —2> 1, HE R and we shall see that
to € E,. Since X is compact and ¢, is contmuous ¢1' :[a,B]— 2% is upper-
semicontinuous. Hence lim, o1 Y(t.)C ¢1'(t), and since t, EE, for m =1,
B: C ¢.(¢1'(t»)). Hence also

B C 11m @ (@7'(1)) C @ (071'(10)), ie., L EE,.

To see that A7, C Ui~ E, fix some ¢ € Arz,. Then dim ¢, (¢7'(t)) = n — 1, hence
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@.(¢1'(t)) has 2 nonempty interior in R*, and thus ¢, (¢1'(t)) contains some By,
lz1,1e., t€E,.

From the fact that Ay, is of second category, it now follows that there exists
some I =1 such that E, has a non-empty interior in R, i.e., E; contains some
interval J. Then for all t € J, B, C ¢.(¢1'(t)), i.e., J X B; C ¢yua (X), and since
J X B; is an n-cube, it follows that dim ¢ yu(X) = n.

This proves Theorem 6'.

PrOOF OF THEOREM 6. Let F={¢}-, be a us.f. on an n-dimensional
compact metric space X (n=2). Let X'C X be an n-dimensional Cantor-
manifold. By Theorem 6, there exists a tree T of order n and type (2, as, ..., &)
of subsets of {1,2,..., k}such thatforalla € T, dim ¢, (X")=n. If, foralla € T,
¢. 1s interior on X', then we are done. If not, then there exist an open
@#UCX' and a €T such that ¢,(U) has empty interior in R ie,
dim ¢, (U)=n —1. Let X" C U be an n-dimensional Cantor-manifold. Another
application of Theorem 6’ yields a further tree T" (of the same order and type) so
that dim ¢, (X") = n for all a € T" (obviously T" # T). If ¢, is interior on X" for
all a € T” then we are done. If not, there exists some @ # U C X" open and
a €T” with dim ¢.(U)=n -1, and the above procedure can be continued.
Since it must stop after finitely many steps, we shall end up with an n-
dimensional Cantor-manifold X*C X, and a tree T* of order n and type
2,as,...,a,) so that for each a € T*, ¢, is interior on X*. This proves
Theorem 6.

For the proof of Lemma 3.1 we shall need the following lemma.

Lemma 3.2. Let F={@)~ be a u.s.f on a set X. Let a, b be subsets of {k]
with a Ub =[k], and a N b =D. If ¢, is constant on some subset W of X, and
Z C o' (@ (W)Y\W, then {¢.}ica is a us.f. on Z.

PrRoOOF. Let z €Z; then ¢,(z)€ ¢,(W). Hence there exists some point
7(z) € W such that ¢,(z) = @, (7(2)). Let now p =2; a8, € [,(Z) be such that
p(Z)=0. Set u'=Z%;a8..; € L(W), and also g =p —pu'. Then Gogp, =0
(since ¢ (2;) = @5 (7(z;))). Hence, since F is a u.s.f. on X, there must be some
i€asuchthat||gog;'|ZA|a]. (Note that |Z||= | p] since Z N W =.) But
for i € a, ¢; is constant on W. Thus p'o¢;' =0. So

gooi'=(u—p)oe =pop —plop =pop;

and _ 5
leeeZAlalZ A u],

i.e., {@ifice is a usf. on Z.
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PrROOFOF LEMMA 3.1.  Let a C [k] with |a | = k — 1 be given. To save notation
assume that a ={1,2, ..., k — 1}. Assume also that ¢, is not O-dimensional. Then
there exists some a = (ai,as,...,a—1)E R*™" such that dim¢;'(a)=1. Set
W = ¢.'(a). Then ¢, is constant on W, and thus, by Lemma 3.2, {¢: }{=1 is a u.s.f.
on Z = @i (@ (W)\W. But ¢, is a homeomorphism on W, so dim ¢, (W)=1
and ¢, (W) must contain some open interval J C R. Hence ¢;'(J) is an open
subset of X which must contain some closed n-dimensional subset X' of X,
which is contained in Z, and this contradicts the minimality of F.

§4. Proof of Theorem 7

In order to prove Theorem 7, we state and prove a stronger result. Let us first
introduce some conventions. Throughout this section “an open set” will always
mean ‘“‘a nonempty open set”, W CC X denotes “W is an open subset of X, We
also assume that the topological spaces Y considered in this section enjoy the
following property: for any U CCY, there exist WCCU and VCCU with
ONV=J If o:X— Y isafunction, and a« ={a:}/2;C X and B ={B;}}-1C Y
are finite sequences, then by “¢(a)= B we shall understand that m = k and
that there exists a permutation of {1,2,..., k}such that ¢(a;) = B.¢), 1S i = k.

DEFINITION 4.1, Let w =3[ (j)8, be an array, of order n and with
constant ¢, w.r.t. some family F = {¢;};c+~ of functions on a set X. We say that
is a nomral array if, in addition to (ar.1), (ar.2), (ar.3), (ar.3.1) and (ar.3.2), . also
satisfies

(ar. N) for every o C T*,

2 e(j)| =LV
jio()=c

TueorReM 8. Let X, and Y;, 1 =i = k, be topological spaces, and let {¢:}{_; be
continuous functions, ¢; : X = Y;, 1 =i = k. Let b be a subset of {1,2,...,k}, and
let T be a tree of order n (nz1) and type {2,4,6,...,2n} of subsets of
{1,2,...,k}\b, so that |b|+ n =2, and such that for alla € T, ¢.s is interior.

Then there exists a constant ¢ = c¢(n,| T*|) so that the following holds : For every
integer L = 1, and every U CCX, there exists some V CCU such that, given any
two disjoint sequences B+ ={B;}Z, and B~ ={B;}/<1 in ¢ (V), with |L* — L™ |=
1 and L™+ L™ = L, there exists in U a normal array p = i, £(j)8,,, of order n,
constant ¢, and norm L, w.rt F={¢}ier, so that ¢,({x;}.-1)=B" and

e ({x}e=-)=8".

Note that Theorem 7 can be obtained from Theorem 8 by taking n =2, b =,
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and U = X, The array u constructed in this manner will also satisfy (ar. N)
which is not required in Theorem 7.
We shall prove Theorem 8 by induction on n = 1.

PrOOF OF THEOREM 8. The case n = 1. In this case |b|+ n =2 implies that
b#Q. We also have T ={{i}:i € T*} and |T*|=2. To save notation, let us
assume that 1 and 2 are in T*. We alsoset b1 = b U {1} and b2 = b U {2}. So, by
our assumptions, ¢, are interior for i =1,2,

4.1) For U CCX we use the symbol V C,;, U (i = 1,2) to state that
V CCU, and that there exists a cube D =Il,cp D, CCllew Y,
with D, CCY,, so that ¢, (V)C D C ¢, (U).

We claim that
“4.2) If VCuyU and B € ¢, (V) and a € ¢;(V) then there exists
some x € U with ¢, (x)=8 and ¢:(x) = a.
Indeed, since ¢ni(V)CILewD, =D, (B,2)E (Il,esD,)Xx D; =D and since
D C ¢ (U), there must be some x € U so that ¢, (x)= (8, a).
We also have

4.3) For every UCCX there exists some V such that V C,,U,
i=1,2.

Indeed, since ¢, is interior and U is open, the interior of @u(U)in Il,es Y, is
nonempty. So, by the definition of the product topology, there must be some
cube D =1l,c,;D,, with D,CCY,, such that D C ¢, (U), and we may take
V=UnNeu(D).

Let us see now that the case n =1 of Theorem 8 holds with the constant
¢ =c¢(1,] T*|) =2 (i.e., in this case ¢ does not depend on [ T*|). Solet L =1 and
U CC X be given. We construct inductively a sequence {U,}i, of open subsets of
X so that U = U, and also

(4-4) Usa C(bl) Uzv, U,, Co U2,+1, r= 1, 2, e

This is done as follows: set U, = U. Apply (4.3) to obtain some Ur_, Cyy UL
Another application of (4.3) implies the existence of a Up_, Cyz) Ur-1, and still
another application of (4.3) provides us with a U;_; C,1y U, and we continue by
an obvious induction. Note that if L is even, then (4.4) holds. If L is odd we must
begin the process with b2 instead of b1 (i.e., Ur-1Cyz UL) in order to obtain
(4.4). Set V = Uy, and we claim that V satisfies Theorem 8 (w.r.t. U and L). We
have

V =U, Cen U2Coz UsCipry UsCpy Us C+ - -
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Let B*={Bi}i<i and B~ ={B/}i; be disjoint sequences in ¢, (V), with
L*+L =L and [L*"—L7|=1. So 87 €@ (V)= ¢, (U,). Hence there exists
some x, € U, with ¢, (x;) = B71. Clearly, ¢:(x;) € ¢:(U,) and B7 € ¢, (U,) hence,
as U,Ceyy Us, it follows from (4.2) that there exists a point x. € U, with
ei(x1) = @i(x2) and @, (x2) = B1. Now, ¢x(x2) € oAU>) and B; € ¢, (U>); hence,
since U, Cyy) Us, there exists a point x; € U; with ¢@2(x,) = ¢:(x3), and ¢, (x3) =
B3. We continue inductively, and construct points x; € U,, 1=j = L so that

(P1(x21—1) = (Pl(xlr), 902(xzr) = (Pz(xzrﬂ),
B:=(pb(X2,—1), B,_=<pb(xz,), r=1,2,... .

(Note that in (4.4) and (4.5) we did not mention the upper bound for r, since it
depends on the parity of L.)

Set e(j)=(—1Y"", and let u =3, £(j)8,,. We claim that u is a normal array
which satisfies Theorem 8.

Note first that @, ({x;}.¢)-=1) = B". Indeed, {x;}.4)=1 = {x2.-1},=1 and, by (4.9),
@5 (X20-1) = B7; also {X;}ey-—1 = {x2,},21 and @, (x2,) = B.. (ar.1) is satisfied tri-
vially. BN B~ = implies that {xs—i}=i N{X2}=1 =, and thus |p|=
|B*|+|B87|=L"+ L™ =L and (ar.2) follows.

To demonstrate (ar.3) we must identify the subsets L; of {1,2,...,L}, i € T*.
Solet Li=U,={2r—1,2r}, L,=U,., {2r,2r + 1}, and L =@ for i € T*\{1,2}.
(Note that the union in the definition of L, and L, is taken over those values of r
for which the corresponding pairs are contained in {1,2, ..., L}. Thus, e.g.,if L is
even then L, = U, 2 {2r —1,2r} and L. = U, 2" {2r,2r + 1}.) In this setting it is
convenient to check (ar. 3.1'): L; (i =1,2) is actually presented in terms of its
decomposition E;, E, = {{2r —1,2r}} and E, = {{2r,2r + 1}}. Since £ (j) = (- 1)
we have that for {j,j'} €E E;, ¢(j)e(j’)= —1 and by (4.5) also ¢:(x;) = ¢:(x;),
i =1,2, and (ar.3.1) follows. To check (ar.3.2), note first that, for i&{1,2},
L;=¢, and thus for all j&€{1,2,...,L}, o(j)={i:i € T* jE L} satisfies
le(j)|=2. Also, for2=j=L -1, o(j)={1,2}, ie.,

“4.5)

i:le@l=2n=2}|zL-2=|ul~c

(recall that ¢ = 2) and (ar.3.2) follows. We still have to check (ar. N). Let o be a
subset of T* If o#{1,2} then {j:1=j=L, o(j)=0o}C{L,L}, and thus
[Ziciy=e ()| =2=c. For ¢ ={1,2}, {j :a(j)=0}={2,3,...,L — 1}, hence

f:a%% E(f)’ = 'Z (—1y"

which settles (ar. N), and concludes the proof of Theorem 8 for n =1.

=l<c
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We proceed towards the inductive step. The following concept and lemma will
be applied there

DErmNITION 4.2. Let X be a set, let {¢:}f; be functions on X, let T* and
b# & be two disjoint subsets of {1,2,...,k}, let n =1 be an integer, and let
c>0. A pair p=3,¢(j)8, and g =27, £(j)8; of normal arrays w.r.t.
F ={¢;}ier~, of order n, and constant ¢, is called a double array w.r.t. b if
{x}i=iN{%}- = and

(4.6) @ ({xi}er=1) = @ (Eiter=-1), @ ({Xi}er=—1) = @ (£ }e=1)-

Lemma 4.1, Let X, Y, 1=i=k {@}-1. b, Tand n =1 be as in Theorem 8.
Assume also that b# O, and that Theorem 8 holds for this n. Then every U CC X
contains a double array p, [, of order n. with the constant ¢ guaranteed by
Theorem 8, w.r.t. F = {¢;}icr~ and b, of arbitrary norm L.

Proor. Let U CCX be given. Fix some a € T. Let ab denote a U b. Then ¢,
is interior. Thus ¢., (U) has a nonempty interior in Y, X Y, (where Y, =1l;c, Y.
and Y, =Ilic, ;). Hence there exists some D = A X B C ¢, (U), where D is an
n +|bJ|-cube in Y, with A an n-cube in Y, and B a|b |-cube in Y,. (Note that
by an “m-cube” we mean a set of the form Ilie,D; C Y., where |d|=m and
D.CCY.)

Let A’ and A" be two disjoint n-cubes in A. (A’ and A" exist by our
assumption of the spaces Y..) Set D'=A'XB and U'= U N ¢,(D").

Let L =1 be any integer. By our assumption there exists some V' CC U’ which
satisfies the conclusion of Theorem 8 for this given L. Let B"C ¢, (V') be a
|b|-cube (B” exists since ¢, is clearly interior) Set D"=
A"XB"CA"XB C @au(U), and also U"= U N ¢,4(D"). Apply Theorem 8
once again to find some V" C U” which satisfies its conclusion. We have

(4.7) ULU"CU, UNU =, @(V")Ca(V).

Let now B and B; be two disjoint subsets of ¢, (V") with | 8,|+ |8.| = L and
| |8:]—18:/ | =1. By the choice of V", there exists a normal array p =
221 (j)8;, of order n, constant ¢ and norm L w.r.t. F ={¢;};c7- in U", so that
@ ({x;}ey=1) = B1 and @, ({x;}.5)=-1) = B2. By (4.7), B, and B, are also subsets of
@ (V") and hence we can find a normal array g =Z;-, £(j)8;, in U’, so that
@b ({%}eg)-1) = B2 while @, ({£j}eg)-—1} = B1. Thus we have

& ({xite-1) = Bi= @ (£ }:p--1}  and @ ({x;}.)-1) = B2 = @5 (% }sp-1),

i.e., (4.6) is satisfied, and the lemma follows.
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PrOOF OF THEOREM 8 — The Inductive Step. Let n =2 be an integer, and
assume that Theorem 8 holds for all lesser values than n. Let X, Y;, {@}iey, T
and b be as in Theorem 8. For i € T* set bi = b U {i}. Let T;, i € T™* be the tree
of order n — 1, and type {2, 4,...,2(n — 1)}, which corresponds to i by Definition
2.1 of a tree. Then bi N T*% = (J and the induction hypothesis can be applied to
the tree T;, with bi replacing b. (Note thatfora € T; (la|=n—1),biUa =bU
{{i}U a}, where {i}U a € T by Definition 2.1, and thus ¢y, is interior by the
assumptions of Theorem 8.) Hence, for each i € T* there exists a constant
c(n —1,|T*|) so that Theorem 8 holds with this constant, w.r.t. bi and T..
Clearly, | T*|>|T%| for all i € T*, thus

c=c(n—1,|T*NzZc(n—-1,|T%) forallie T*,

and it follows that Theorem 8 holds with this value of ¢ for all bi and T;, i € T*.
We shall prove that Theorem 8 holds for b and T with the constant

c(n| T*)=9| T*F27e(n ~ 1,| T*}).

Given i € T*, L =1 and U CCX, the induction hypothesis guarantees the
existence of some V CC U which satisfies Theorem 8, w.r.t. bi, T;, the constant
¢ =c(n—1,|T*|), and (the norm) L. We use the symbol V <4 1.1, U to denote
that V satisfies the above.

Let now L be a positive integer and U CCX. We shall construct a subset
V CCU which satisfies Theorem 8, with the constant c(n,| T*|) mentioned
above.

Let m be the largest even integer so that m" = L. One easily checks that

(48) L-m"< 22"m n-1 = 2IT‘|L(n~1)/n.

4.9) CLAM. For every U CCX, there exist open subsets U,, U,,..., U
and S of U and open sets Vi, Vs,..., Vir+; and W so that:
(i) U, U,...,Uqv and S are mutually disjoint.
() Vi<eirmryU, i € T*.
(ii)) @5 (S)C @n(Vi), i ET™.
(iv) WCe»S,ieT™

(Recall that by (4.1), W Ci) S means that W CCS and that there exist some
[b|+1 cube D in Yy, =IlcuY, so that ¢,(W)C D C ¢u(S), D =D, xD,
D, CCY,, D; CCY.:. Note also that in this stage of the proof b may be empty. If
b =& then (iv) is meaningless, and we may take W = S. Clearly, bi# < for all
ieT*)
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Proor oF (4.9). Let UCCX be given. To save notation let us assume that
T* ={i}"]. Pick some a,€ T,. Then @, is interior (where, of course, a,b1 =
a;Ubl). Let Ay X B, C ¢, (U) be a (|b|+ n)cube, with A,CCY, an (n —1)-
cube and B, CC Y, a (|b|+ 1)-cube. (Recall that Y, =1l.c, Y..) Let A} and A}
be two disjoint (n — 1)-cubes in A,. (A; and AY exist by our assumption on the
spaces Y;.)

Set

U = (P;,lbl(A; X Bl)m U.

Apply the induction hypothesis to find some V,CCU, so that
Vi<@ir.mn-ny Ui Thus, in particular, ¢,(Vi)C ¢, (U,) = B,. Let Z CCqui(V1).
(Such a Z exists since V, is open and ¢, is interior.) Set

Sl = (P;]lm(A,{ X Z) N U.
Since AIN AT=, we also have $iN U, =, and also ¢,(S) C @, V)).
Altogether we have:

U, and S, are disjoint open subsets of U,

4.10
( ) Vi<eirmry U and  @,1(S) C @ui( V).

Pick now some a, € T, and operate on S, with a,b2 as we have operated on U
with a,b1. By doing this we obtain

U- and §: are disjoint open subsets of S;,
4.11)
Vs <p2.Tam" 1y U, and quz(S:) C <Pb2( Vz)-
Clearly, Ui, U: and S. are mutually disjoint, and since S. C S, we also have

(4.12) @51(52) C @61(S1) C @p1(V1).

Now pick some a: € T;, and operate on S. as above with (a;b3), to obtain
Us, $:C S and Vi<gsr,m»; Us, and continue by an obvious induction with
i=4,5,...,|T*|. At the | T*| step we obtain Ur+|, Sjv-/C Sr-1, and

VlT‘f <(b|T‘f,TlT.|,m""‘) U!T*; ,

and we set S = 8. If b = we set W = S. If b# (J, apply the fact that ¢, is
interior for all i € T*, to construct a sequence Wi+, Wir -, ..., W,, W, so that

Wx C(bx) W, C(b2) W, C(b}) W,C---C W\T*IC(MT*I)S

{see (4.3)). Set W = W,. Then clearly W, Ce S forall i € T*, i.e., (iv) is satisfied.
(iii) is satisfied too as shown in (4.10) and (4.11); and so is (ii). (i) holds, since in
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each step of the construction Uy, U,,..., U, S; are disjoint, and Ui, Siss are
disjoint subsets of S;. This proves ¢4.9).

We return now to our given U CC X. Applying (4.9) m times, we construct in
U open sets U}, Vi, §’ and W/, 1=j=m, 1=i=|T*|, by induction on
j=m,m—1,...,2,1,as follows: First, for j = m, apply (4.9) on U, to obtain U}",
VI 1=i=|T*|, $" and W™ in U, which satisfy (i), (ii), (iii) and (iv) of (4.9).
Assume that U{*', VI*' §™" and W/*' have been constructed. By applying (4.9)
one more time on W', we obtain, in W', Ui, VI, i€ T* S’ and W’. From
this construction it then follows that

(4.13.0) W', S, Viand Ulare opensubsetsof W', 1=j=m—1, ieT*

4.13.1) Thesets Ui, 1=j=m, i€ T*are mutually disjoint.

(4132) V{<(bi,Ti.m"_‘) U{, 1 é] = m, l (S T*
(4.13.3) WiCw,S, 1=j=m, i€T"
(4.13.4) Pri (S])C (Pb,(V],), 1 é] = m, i e T*

Set V= W', and we claim that V satisfies Theorem 8 (i.e., V <p.rr,U).

To see this, let B ={B7}Z and B~ ={B:}iZ; be two disjoint sequences in
0 (V),with L*+ L™ =L and |L"— L"| = 1. We have to show the existence of a
normal array u =2/, &(l)8, in U, of order n, constant c(n,|T*|)=
9| T*2""'c, and norm L, w.r.t. F = {@.}ier-, such that ¢, ({x:}, e (/) = £ 1) = B~

Before presenting the details of the proof, which is lengthy and complicated,
we wish to comment on its general strategy. The sequence {x}, 1=[= L will
consist of m +1 subsequences M;, 1=j=m +1. The first m M;’s will be
constructed by induction on j =1,2,..., m so that the length of M; is m" ™" and,
rougly speaking, each M; is decomposed into subsequences, most of which are
normal arrays of order n — 1. Together with the points of M, for each x; € M;,
we shall also construct the “sign function” e(lI)= %1, and in the inductive
procedure we shall see to it that for “many” x.’s in M;, there will correspond
some xy € M;.,, with e ()e(I")= — 1 and @i (x;) = ¢: (x,) for some i € T*, which,
after “filling up” the amount by constructing M,,.., will imply that p =

St e(1)8,, is a normal array as we wish. As mentioned, the sequences M;,
j=1,2,...,m will be constructed inductively, and such that M; C Uier Ui
(which by (4.13.1) guarantees that the M;’s are mutually disjoint). It turns out
that the structure of M; does not reveal the whole complexity of the structure of
M, for j =2; and thus the presentation of the inductive step (in the construction
of the M;’s) right after the construction of M, though possible, might seem
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unnatural to the reader. Hence we have decided to present the construction of
M, first, then to show how M. is derived from M,, and then to describe the
inductive derivation of M, from M;,. Clearly, some of the features in M;_, > M,
appear also in M, = M., and thus will be presented twice. Still, we feel that this
approach will make the proof more accessible to the reader.

To construct M, we pick some i € T* e.g., i =1. We also set

Bi={B/}""" and Bi={Br} "
(Recall that m is an even integer.) Let

a*={a}"” and a ={a; )"

be two disjoint sequences in ¢(V). Since V= W'C,yS' (by (4.13.3)) the
sequences
87 ={(Bi,anliti” and & ={(Bi,anl”

are both in ¢,(S'). (Note that §7 N §; =&. Our proof covers also the case
b =, and in that case (where there are no 8°s) 67 = a”, and the a’s were
selected to be disjoint sequences.) By (4.13.4) ¢,(S')C @si(VY), ie., 87 C
@1(V3). Since by (4.13.2) Vi<eir .~ Ui, we can find a normal array
v, =31 e(1)8,, in U}, of order n — 1, and constant ¢, w.r.t. {g;}icr;, such that
@si({xi}en=s1) = 87. We take M, ={x,}/y", and the signs e(I) for 1=[/=m"™
which correspond to the array v, will be taken as the signs in p too. In this way
we construct M, = {x,}/7y ', and e(/), 1= [ = m"™". Note that @, ({x;}.()-=1) = B7.

To construct M, we shall first have to reorder M. Actually, we shall reorder
the indices 1=l =m""". Let 7 :{o C T%, |0 |=2n —1}— T* be a function such
that 7(o) £ o. (Such a function exists, since |T*|=2n, as T is a tree of type
(2,4,...,2n).) vi =37 (1), is an array w.r.t. {¢;};icr: and, as such, to each
1=1=m""", there corresponds a subset ¢(I)C T+ with |a(l)|=2(n —1), by
(ar.3.2). Note that 1 & o(l), since T{C T*\{1}. Set r(\)=7({1}U o)), 1=]=
m"™'. For i € T* let

N=r'O)={:1=l=m" ", 7(D)=i}.
The N;’s are disjoint sets of indices. (Note that N, =(J since 7(c) & a.)
(4.14) Coam.  [Siene(D)]|=2"em" 2, for all i € T*.
Indeed, let i € T*. Then

Ni={l:r()=7{}Va()=i}l= U {l:0()= 0}

o
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where the union is taken over those subsets o of T7 such that 7({1}Ue)=1i
Clearly, the number of such sets o is less than 23! < 27", Hence

= << ' < |7, n—2
l;li g(l) , a:f({%a)=i l:d%=zr 8(1) , - 021—'({;)0)=l' I:o%ztr g(l) ' - 2 cm ’
since | Zi.oiy-0 €(I)] = cm™? by (ar. N) as v, is a normal array of order n — 1 and
norm m"™'

Now, we decompose each N; into 3 sets 'N;, °N; and °N; as follows:

Selection of 'N;: If b# & we take 'N, =@. If b =, we select a maximal
number of disjoint pairs {, '} C N;, wjth ¢(I}- ¢(I')= —1 and ¢:i(x;) = @i (x1),
and let 'N; be the union of those pairs. Note that (if b = @) then, for I, I’ in
N\'N, e(I)- e(I')= ~ 1 implies that ¢, (x;) # @ (x). Clearly, 3en, () =0.

Selection of N, and *N;: *N, is selected to be a subset of N; \'N; with maximal
cardinality, so that 2,y (1) = 0. (For example, if

{HENAN:e()=1B|=HEN\'N:e(D)= — 1},

then we take °N; ={{ EN,\'N;:e(])=1}U P, where PC{IEN\'N;:e(]) =
—1} is a subset with |P|=|{{ € N.\'N,, e(I)=1}|)
We also set °N; = N;\('N, U°N,). The following then holds:

(4.15) > e(I)=0 andalso Y e(l)=0.
1€2N; €N,
(4.16) | > e()|=I’N:| (i.e., the elements of °N; have constant signs).
1e3N;

Indeed, if [ and !’ are in°N; and £(l)- £(I')= — 1, then we can add / and [’ to
N; without harming (4.15), and since >N, has been selected to be a maximal set
with (4.15), (4.16) follows.

4.17) PN |=2Tem™ 2.
Indeed, by (4.14)

2Tem" 2=

> e =

IEN,

T e+ 3 e+ 3 e

1€2N; 13N,

,ZN. s(l)l by (4.15).

We also have

(4.18) > > e()=0.

ieT* 13N,
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This foliows from the fact that

5 3 em=3 Se-(Z T e+ 3 T ).

iET* 1e’N; iET* IEN; ieT* IE'N; ieT* IE2N;
i i i [

Each of the sums Siene (1), Sien, (1) is 0 by (4.15), while Sicr Sien £(1) =
EIEMl 8([) = 0, since

Hl:isls=m L e(D)=U=im" '=l{l:1=]l=m"e(l)= -1},

which follows from the fact that the x,’s which correspond to the I’s with
e(l)= =1 are mapped by ¢, onto §°, and both 8" and 8~ are sequences of
length 3m"~". Finally

If b=, then

(4.19) e (xh IENV'N, e()=1)N o (x}, | ENA'N, e(l)= —1) =

which follows from the selection of 'N;. (In particular (4.19) holds for ZN, C
Ni\'N.)

We come now to the construction of M,. For each i € T* we shall construct a
sequence My, in U7, and take M, = U er My, (in some ordering. ) Each M,
will be constructed as a union M, = ' Mo, U > My, U *May,. So, fix some i € T*.
We shall first construct *Ma,. For a subset P of {1,2,...,m" "'} let

P+={l:l€P,s(l)=1} and P ={l:1€Pe(l)= -1}

By (4.5), ]—;I N:.|. Let ’B3,={B) }!NV2 a subsequence of
e subsequence of 87\ B7. Then *B3;,,C ¢, (V)=

B \Bi and szm {B } =1
0 (W) C @, (W?) by (4.13.0) and since M,C U;C W? we also have that
@ ({xhent) C @ (W) and ¢; ({x: hieen: ) C 9:(W?). By (4.13.2), W?Cqy S°. Hence,
we can select in ¢, (S?) two sequences 85, and *85, of length 3|°
that

[2N; 112

830 ={(B7,a )=

2N, 12

and 52(-)—{(Br,0‘ )} =1

where
12N 12 PN |12

{a7}=i = @({uhen;) and {a’h-i = @i({xhen:t).
(In other words, *83, is a sequence in ¢, (S°) C Y, X Y;, such that if we project it
into Y, we get the sequence B3, while if we project it into Y; we obtain the
sequence ¢ ({x.}ien:); 2824, is projected to *By in Y, and to ¢;({X}ie2ny) in Y.
As mentioned above, the existence of the 285, follows from (4.13.3) and (4.2).)
Note that *87;,N*85,=. This follows from (4.19) if b=C (.e.,
2650 = @ ({x:}iens)) and from the disjointness of B~ if b#J. By (4.13.4),
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2850 C @5 (S C i (V?), and by (4.13.2), Vi<giz,m-+ Ui. Hence we can find in
U? a normal array *va = S,o; £(r)8,, W.r.t. {@.er:, of order n — 1 and constant
¢, s0 that @y ({2, }e¢)==1) = 285 and, in particular,

@ ({2 }ei==1) = szt(i) and ¢ ({z:}e==1} = @ ({xl}tesz)

We take {z,},0) = M.

Now we select *M,,. By (4.16), the elements [ €N, have a constant sign.
Denote this constant sign by € (i.e., for [ €°N;, £(I) = ). From the elements of
the sequence 8° which have not been selected yet, we select a sequence *Ba; of
length |°N;|. Since *Bxi,C ¢, (V)C ¢, (W?) and ¢ ({x}ien,) C @i (W?) (by
(4.13.0)) and since W>C;,S°, we can find in ¢ (S°) C Y, X Y; a sequence *8x,
whose projection into Y, agrees with ’B.,, and whose projection into Y; agrees
with ¢; ({x;}iern,). By (4.13.4), 626 C ¢ (S*) C ¢, (V7), and as ViC U; (which
follows trivially from (4.13.2)) we can find in U} a sequence *M,; of length |’ N; |
so that @, (Mag) =8,:). We also assign a sign to the indices of the sequence
*M.;,. The sign of the indices of My, will be constant, and will be the opposite
sign to the sign of °N;, i.e., if the sign of *N; was &, then the sign of *M,;, will be
— &. Note that

Moy N {2z, 1 2, E*Magy, £(r) = — e CMa)} = &

(where & ( May) is the constant sign of the indices of *M,;). Indeed, assume, e.g.,
that e("M,u)) = +1. If b# @, then by the construction @, (M) =>Baw C B~
while

@ ({z.: 2. €My, 6(r) = = 1}) =By, C B,

and since 87 N B~ =, we are done. To settle the case when b = (J, note that we
also have

0. (M) = ¢ ({xihien) C @i ((x 1 LENA'N, (1) = — 1),
and by construction of *M,),

Pi ({Z, 1z, € 2M2(i),£(r)=~1}) = @i ({X1}152N1,5(1)1+1).

If b =(J, then by (4.19) these two sets are disjoint, and our claim follows.
Finally, we construct 'M,,. This is done only if b = . Applying Lemma 4.1,
we select in Ui\ (M, U >M,;)) a double array

TN 12 A

Wy = Z ()8, 'tan= Z £(s)d;,,

= s=



Vol. 50, 1985 SUPERPOSITION OF FUNCTIONS 39

of order n — 1, constant ¢, and norms|'N; | each, w.r.t. {¢.},e; and {i}. (Note that
'N; has been defined to be the union of disjoint pairs, and hence 3|'N;| is an
integer; note also that Lemma 4.1 has been formulated for n (and not for n — 1)
and we apply it here for n —1, as we can by our induction hypothesis on
Theorem 8 for n — 1. Finally, observe that the “b” from Definition 4.2 of a
double array is replaced here by {i}, i.e., we have @ ({y: }e==1) = @: ({ Vs )es)=51).)

We set ' My, = *{y,}!,I:N{V2 U {y, }’::N'IUZ, Also, we assign signs to the indices t and s,
by the corresponding signs in 'va) and ') Ma, is defined to be 'Magy U * Mo, U
3Mg(,-), and Mz = Uier* MZ(i)~

REMARK. When we construct My, { € T*, we may begin with M., then
construct Mz, and so on. In each step, however, we must be careful to select
the “new” B’s from the ones which have not been selected in earlier steps.

We come now to the inductive step in the construction of the M,’s. Assume
that M,, M., ..., M;_, have been constructed so that:

4.20) M, is a sequence of length m"™', lsr=j-1

For each 1=r=j -1, M, is the union M, = U, M),

421

421) so that for each i € T*:

@.21.1) M., C U.,
and M, is the disjoint union M, = 'M,i, U *M,(, U "M,,), so
that

4.21.2) The points of °M,, are the atoms of a normal array *v,q of

order (n —1) and constant ¢, w.r.t. {¢.},er, and the measure
v, satisfies *,,(X) =0 (i.e., in the sequence *M,;, there are
equally many indices | with £(I)=1 and ¢(I)= —1).

4.21.3) If b# & then 'M,, = &, while if b = ¢ then the points of 'M,;
are the atoms of a double array 'v, and 'b,,, of order n — 1
and constant ¢, w.r.t. {@,}ser; and {i}.

4.21.4) The sequence *M,;, is given together with a sign function & on
its set of indices (i.e., € : "M¥,— { = 1} where *M%, is the set of
indices of *M,,) so that ¢ is constant on *M;, for each i € T*
and 2ier Zien, €(1) =0,

REMARKS. (i) The index sets of ' M., M, and *M,;, now have a natural sign
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function &: for *M,, this follows from (4.21.4), while in the case of 'M,;, and
M, which are atoms of arrays, we adopt the corresponding signs of the arrays.
(i) Note that the above structure of M, applies to M, too. In this case
M,y = for 1 #i € T*, and ‘M) ="My = & too, i.e., M; =M. Actually,
we could have introduced the inductive step right after the construction of M,,
but at that point of the construction the introduction of conditions such as (4.21)
and its followers could have appeared unnatural to the reader. To avoid this we
have constructed M, first which, as we hope, explains the sources of (4.21).

Note that from (4.21.2), (4.21.3) and (4.21.4) it follows that

(4.21.5) > e(l)=0.

lemM:

(where &(+) is the above-mentioned sign function). Indeed, for a given i € T*,
Sk, €(1) =0 by (4.21.2) and by (4.21.3), Zie1my, £(1) = 0 too. Hence (4.21.5)
follows from (4.21.4).

As in the construction of M., before constructing M;, we introduce a
reordering of the index set M*, of M;_,. Actually, we shall reorder M7 for all
r=j—1. We begin with the following

4.22) CLAamM. There exists a function 7 : U.cr-’ MG, — T* (where *My;, is
the set of indices of *M,,) such that for | €’MJ%y, 7(I) # i, and so that
forall i € T*, Zic.mye (1) =0.

Indeed, set d = minier-|"M%,|. Let us assume that d = "M, and that &
attains different values on *M%, and *M.%,). (There is no loss of generality in these
assumptions.)

Let G C M, be a setso that d = |G |. (G exists by the minimality of |*M;(;].)
Define now 7 on U cr- MY, by

3 ifle’Mi,HUG,
HOE

1 if [ EBM,Tz)\G orl € U : r’fi)-
ieT*
i=z3
(Recall that T* ={1,2,...,|T*|} and that | T*|= 4 since n =2.)
1t follows at once from this definition that if I €°M%;, then 7(I)# i. Also, if
i {1,3) then +7'(i)=@. For i =3, 77'(i) ="M, U G; hence

>oe)= X e+ X &),

le<71(3) 1M IEG
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and since both *M5;, and G have the same cardinality d, and ¢ attains opposite
signs on these sets, the sum is 0. Finally,

> oeh= X eh- 2 &),

rer (1) [EU e My, ter~1(3)

and both terms in this sum are 0, the first by (4.21.4) and the second by the above
observation. This proves (4.22).

We now wish to extend the function 7 of (4.22) to M*%. This is done as follows.
Let 7:{w:0w CT*|w|=2n—1}— T* be a function so that

(4.23) f(w) £ .

This is possible since | T*| = 2n. Let [ € M*\U 7. *M%,. Then ! is an index
of an atom x, in one (and only one) of the arrays “v,q), 't or ‘B, i € T* (by
(4.21)) and, as such, the set a(!) is well defined, so that |o(/)|=2(n —1) and
a(l)C T% (by (4.21) and (ar.3.2)). We now define

(4.24) r(=#{i}uo), 1eMINU M.

Thus, by (4.22) and (4.24) 7 is now a well-defined function from M7 into T*.
Note that by (4.22), (4.23) and (4.24) the following holds:

(4.25) For | € M* if | € M, then 7(I)# i, and if [ is an index of an
atom of an array in M., (i.e., | €'M,,U’M,;) then also
()2 {iyU a(l).

Set

(426) N(,‘) = Tﬁl(l'), l [ T*.

4.27) Cram.  For all iv€ T*, |Sien,,, e (| =3| T*[2"'em™ ™.
Indeed,
Ny = <N,(,»(,,ﬂ ( U’ rTi))) U U (N N*M5) U (Noy N ' M)
iET* ier*

and this is a disjoint union. We shall estimate 2 £(/) on each of these sets. So, let
ih€ T* be fixed.
(i) By (4.22),
> e(l)=0.

3
TEN N Jiers M:‘zi))
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(i) M5, is the index set of the atoms M, of the normal array v, of order
(n — 1) with the constant ¢, and as M, C M,, it follows from (4.20) that
vl =M= m"™.

Thus, by (4.26), (3.24) and (ar. N),

> e > M=

S, e0)
IEN,(,-O)nzM,"f,«) 1E€2M 7 (D) =ig | Ias(r*i 5 16(211;/1,’{,,
o|=2(n— o(l)=0o
F({i}uo)=ig

=2

> &) , =2Tlem 2 < 2™ em ™2,
1e’M;,
a(l)=a

(iii) "M, is the union of two sets of indices, each of which is the set of indices
of atoms of some normal array (‘v and '#,) of order (n — 1), constant c, and
norm = m""'. Hence, an estimate as in (ii) applies to each of these sets, and it
follows that

D 8(1)' <2-2lem"2,

IEN,;N' MY,

(4.27) now follows from (i), (ii) and (iii). (Note that the estimates in (4.27) are
very generous, and can easily be improved; however, we find it convenient to use
this estimate. The main point in (4.27) is that the bound for |2 en,, ¢ (/)| does not
depend on r)

Now we decompose each N, into 3 sets 'N,q, *N,qy and *N,g,, in the very
same way we decomposed N; before constructing M.

(4.28) Selection of 'N,,. If b#J we take 'N,,,=C. If b=, we
select a maximal number of disjoint pairs {/, 1"} C N, with
e(l)- e(I')= —1 and @i (x) = @i (x), and let ‘N, be the union
of these pairs.

{Recall that x, is the point in M, whose index is ! € N,(;.) Note that

4.29) If b =0, then for [, I’ in M,;)\'N,iy, £(I)- e(I')= — 1 implies
that ¢ (x) # ¢: (x0).

From (4.28) it also follows that

(4.30) > e()=0.

1€'N, ;)
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4.31) Selection of *N,. N, is selected to be a subset of N,i»\'Ng),
with maximal cardinality, so that 2,c2n, & (I) = 0 (cf. the corres-
ponding selection of *N;).
(432) SeleCtion Of 3I\],(,'). 3]\J,(,*) = N,(,')\(IN,(,') U 2N,(i)).
We claim that

(4.33) The sign function ¢ is constant on °N,; for each i, and
Zier Ele-‘N,(,») 8(1) =0

and also
(4.34) PNoo| =31 T*2" em™.

Indeed, if / and [’ are in *N, and e(l)- e(I’)= — 1, then we can add both |
and I’ to ’N,¢, without violating (4.31), and this contradicts the maximality of
’N.&». Hence ¢ is constant on °N,,. Also,

ST e0=3 S 0-(3 T e+ 3 3 ).

The first term in this sum is 0 by (4.21.5) (since U e+ Noy = M%) The other
terms vanish by (4.30) and (4.31). This proves (4.33). Hence,

S || 2 )

1€°N,(;, IEN, ;)

(since the sums over ‘N, and *N,;, vanish by (4.30) and (4.31) and

I’N.

> e(l)]§3|T*|2'T*'cm"‘2

1€R;)

by (4.27), which proves (4.34).
For a subset P of M* let P*={l € P:¢(l)= =1}. Finally we have

4.35) If b =¢ then
ei{{x}: I EN\'No) )NV e ({x}: I ENo\'Nw)) =
This follows from the maximality of ' N, (cf. (4.28)). In particular we have
e:({x}:1E€°NWNe({n}: 1 E’Nw) =D

We are now ready to construct M;. M; will be constructed to be a sequence
which satisfies (4.20), (4.21) and (4.21.p), 1 = p =4. The construction is practi-
cally identical to the construction of M,. Hence are the details.
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(4.36) Construction of *M;;,. By (4.31)

*Ni-nm] = 'Ng-vo | = 3*Ny-ve| -

Let °Bj; and *Bj, be subsequences of 8 and 8~ respectively,
of length 3> N1 | each, which consists of elements of 8 and
B~ that have not been selected earlier in the construction. Then
By C @ (V) C @5 (W') (by (4.13.0)) and since N1,y C M-, C
Uier U C W' ((4.21.1) and (4.13.0)), and W’ CuiyS’ (by
(4.13.3)) we can find (by (4.2)) in ¢, (S’) two sequences >}, and
87w, of length 3|>N;_iy,| each, so that the projection of *8,
into Y, is ’Bjy, while the projection of ’8;, into Y is
¢ ({a}:1 €E*Ng-iy) and the projection of 8y, into Y; is
o ({x}: 1 E€°Njoiy). 287w N 85w =D. This follows from (4.35)
if =0, and from the fact that 3" N B =, if b#J. By
(4.134)  26%5,Cou(S))Cen(V), and by (4132)
Vi<@ir,m+ Ul. Hence there exists in U/ a normal array
IZN(A

R *1)(1)'
Vi) = 2 e(s)8.,
&

w.r.t. {@ }ier:, of order n — 1, constant ¢, and norm |*Ny_iyw |, s0
that

enl{z}:e(s)= 21)="8},
and in’ particular ¢, ({z,}: £(s)= 1) =B}, while
e({z}e(s)= =)= a({n}: 1 € N-iw)-
(Note the = and +!) We set

Moy ={z.}, 1=s=]"Ngywl-

4.37) Construction of *M;,. By (4.33) the sign function ¢ is constant
on *Ny-nw. Denote this constant by &. Select a subsequence
B, of B7"\{the elements of B~° which have already been
selected} of length |*N-1y|. Since *Byiy C ¢» (V) C ¢, (W') and
@ ({x}: 1 €°Ny-1yw) C @ (W) (by (4.13.0)) and since W’ Ceuiy S,
we can find in ¢, (S’) a sequence *8;;, whose projection into Y,
agrees with ’B;;, while its projection into Y; is ¢;({x}:1 €
*Nyonw). By (4.13.4) *84,C 04 (8')C ¢ (VY), and since from
(4.13.2) it follows that ViC U/, we can find in U’ a sequence
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‘M, of length |’Ny-y@ |, so that @. CMie)="8. We also
assign a sign function ¢ to the indices *M%;, of *M;;,, which will
be constant on *M;, and will be the opposite sign to the sign of
*Ng-1 (1.€., if the sign of >Ny, is &, the sign of M, is — ¢).

We claim that
(4.38) Moy N {2 ;2. €My, £(s) = — e CMi)} = &

(where £(*M;) is the constant sign of this set).
Indeed, assume, e.g., that eCMj,y) =1. If b#J then ¢, (M) =>B;,C B~
while

e({z.:e(r)=-1}="B;,C B~

by (4.36), and since B~ N B~ =, (4.38) follows. If b =, we argue as follows:
by (4.37) and (4.32)

@ (M) = @i ({x} 11 €°Nyyw) C i ({x} 1 1 € (Ny-nw\'Ny—nw) ),
and by (4.36)
¢i({z: 1 2, €My, £(s) = — 1D = @ ({x} 1 1 €Ny
Hence, if b =, these two sets are disjoint by (4.35).
(4.39) Construction of 'M;, (only if b = ). Applying Lemma 4.1 we
select in UM, U *M;;) a double array
"N, 'N 112

L U'l(i)‘lz " G L)Y
Vigy = 2 e(s)8,, and '@ = S} £(s)5;,,

§= 5=

of order n —1, constant ¢ and norm 3|'Ny_y| each, w.r.t.
{¢.}ier; and {i}. We set

"My = {y.}U{y.}, 1=s=3'"Ny-nwl-
Now we define

4.40
GO0 M= "M UM UM, and M= U M,
ieT*

By (4.39), (4.37) and (4.36), M;;,C Ui. Also, from the above and (4.38) it
follows that if x; and x; are in M,;), and £(I)- e(I')= — 1, then x;# x;.. Since the
sets U are disjoint (by (4.13.1)), e (I)e (I') = — 1 implies x, # x; for x,, x, in M,.

We check now that (4.20), (4.21) and (4.21, p), 1=p =4 hold for M,.
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By (4.39), (4.37) and (4.36) the sequence "M, p = 1,2, 3 is of the same length
as the set "Ny 1. By (4.26), Uicr- Ny_iyi) is a decomposition of My_,,, and
Ni-nyi = UZ=1 ’Ny-u 1s a decomposition too (by (4.28), (4.31) and (4.32)). Thus,
since by (4.20) [M{-,| = m"™', the same holds for M* too.

(4.21) and (4.21.1) for M; follow from (4.40), (4.36), (4.37) and (4.38).

(4.21.2) for M; follows from (4.36), and (4.21.3) from (4.39). To verify (4.21.4)
for M;, note that by (4.37)

5(31\’[,'(.')) = - S(JN(jfl)(i)) forall i € T*.

Hence (4.21.4) for M; follows from (4.33).

This completes the inductive construction of M;, 1=j= m. Note that, by
4.20), |UZ, M*|=m -m"™"' = m". (We assume here, as we clearly may, that
the index sets for different M;’s are disjoint.)

We still have to construct M,... This is done as follows.

(4.41) Construction of M,.... By (4.21.2), (4.21.3) and (4.21.4)
IM¥|=IM¥|=im"" forall2=j=m,

and by the construction of M|, the same holds for M, too. So, if
b# O, then by (4.36) and (4.37) @, ({x:x €U M, ()=
+1}) is a subsequence of B8° of length 3m". Recall that
|B*|+|B7|=L and ||B"|—|B7|| =1. (Note that |B] for a
sequence 3 denotes its length, and not its cardinality as a set.) m
was chosen to be the largest even integer with m" = L. So, if
m" < L, Let 'B* be the subsequence of 8 which remains after
removing from B~ the subsequences ¢, ({x; € UL, M, e(I) = +
1}). Let M,... be the union of two sequences M., and M .., in
V so that ¢, (M.,) ="B*. We also extend the sign function &
to M = U]\’ M;, by letting € be + 1 on the indices of M., and
—1 on the indices of M ... (Note that M., N M., = J since
B'NB =C. Also M. N M, = for 1 =j = m, since M,,.. C
v S, while M, CUer- U, and S'N U= forall 1=j =
m and i € T*) If b =, then we select in V any sequence
M,... of length L —m", which consists of different elements,
and extend the sign function ¢ to its indices arbitrarily. Note
that in this case too M., does not meet U;_, M;. Also, in both
cases
'Mm+l , =L~ mn = 21T‘]L(n—1)/n

by (4.8).
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This completes the construction of M = U,'-": M;. Recall that each M; has
been constructed as a union of sequences. Let us assume that the indices of those
sequences are disjoint, and are so ordered that M itself becomes the sequence
M ={x,}i—, under the same indexing. Set

(4.42) w= 12 e(1)8,,.

We shall show that p is a normal array, of order n, constant
c(n,|T*)=9|T*}2""¢

and norm L, w.r.t. {¢i }ier+, such that ¢, ({x:}.0)-=1) = 8%, and {x,;}i=, C U, which
will prove Theorem 8. (Clearly, the signs (/) are the ones assigned to the indices
1=1=L through the construction.)

Note first that, by (4.21.1) and (4.41), M ={x;}=is. C U. Also, by (4.41),
o (xi}ey=a) = B7. If b#A D this also implies that for £ (I)e(I)= -1, x;# x:
(since 8" N B~ =) If b = the above still holds. Indeed, as the sets M =jzma+1
are mutually disjoint (by (4.21) and (4.21.1)) we may check each of them
separately. If x; and x, E M,.., e(I)- e(I') = — 1 implies x; # x, by (4.41), while if
X, X € M;, for some 1 = j = m, this follows from the statement after (4.40). This
shows that u satisfies (ar.2), ie., lu|= L.

To check (ar.3), we have to define the subsets L; of {1,2,...,L}, i € T*. So fix
some i€ T*. For 1=j=m, M, = U,cr- My, and

M, = 11\4)‘(:‘) U ZM,-(,-) U 3Mm>

((4.21) and (4.21.1)). For i # iy, °M;; is a sequence whose elements are the atoms
of the normal array *v;, of order n —1 w.r.t. {¢, }.cr (by (4.21.2)). If i, € T*, let
L;* denote the subset of M}, which corresponds to *v;, by (ar.3). By (4.21.3),
"M, consists of the atoms of the double array 'v, and 'y, of order n —1,
w.r.t. {@}er;, and i Again, if i€ T%, let L};* and L}’ be the subsets of the
index sets of 'v;;, and '5,, which are guaranteed by (ar.3).

Note that by (ar.3.1) and (ar.3.1') we have

(4.43) (Ze(l)8,)o 9, =0, where the summation is taken over !/ €
L7 1€ L, or I €L, Or, equivalently, there exist decom-
positions E*, Ei* and E}* of L*, L1 and L}* respectively,

each of which consists of disjoint pairs {/, I'} of indices, such that
e(D)-e(I)= —1 and @,(x:) = @, (xr).

We can now define L;. The selection of indices in L;, will be so organized that
they will appear in disjoint pairs {/, [} with e (I)- e (I") = — 1 and ¢, (x:) = @i, (x0).
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(444)  Thesets LY L and LI¥, 1=j=m, i € T*, i# i will all be

ia
contained in L,. Note that the pairings E;*, E;” and E;* of
these sets (from (4.43)) induce a disjoint pairing on their union,
since the sets themselves are disjoint, and each pairing consists

of disjoint pairs by (4.43).
In addition, L, will consist of the following indices.

(4.44.1) If x, E'M,,, i.e., x; is an atom of either 'y, or '#,, then in
each case there exists, by Definition (4.2) of a double array
w.I.t. {(p,},erjg and i, (and (4.6) in particular), some atom x, of
the other array, with £(I)-e(I')= —1 and ¢,(x/) = ¢,(x:). Let
D!, denote the collection of all these pairs {/, I'}. Note that their
union is 'M;%,. So we add 'Mj,, to L,. Clearly, the pairs in D/,
are mutually disjoint, and by (4.21.1) they are also distinct from
the pairs which have already been selected.

(4.442) If x, €°M,, for some 2=j=m, then by (4.36) there exists
some I"E°N;_ ¢, so that e(De(I’y= —1 and ¢, (x) = @(x),
where x, € M., is the element with index {' (cf. the statement
preceding (4.37)). Let Gi, denote the collection of all these
pairs. We add the union of G, (i.e., >M;5,, U *N;_1,) to L. Note
that this set is disjoint from the ones selected earlier; indeed, for
the elements of My, this follows from (4.21.1), while for
[ €°N,_\) (actually for | € N,_,,) we have: [ is an element of
M), and thus | € M;*,;, for some i € T*. By (4.25) and (4.26)
we have that i, =r(I)Z{i}U a(l) (cf. also (4.23) and (4.24)).
Thus, I cannot be an element of the sets that have been assigned
earlier to L,, since by (4.44) and (4.44.1), for each [ in one of
these sets, either i, € o'(!) (for [ in L™ L} and L™ or
i =iy (for "M ).

(4.443) If x, €'M,,, for some 2=j=m, then by (4.37) there exists
some I' €°N;_y, with e (1)e (I') = — 1 and ¢,(x;) = ¢,(x:), where
xr € M;_, is the element with index I'. Let H! denote the
collection of all those pairs {I, I'}. Their union *Mj, U N,_, is
added to Li,. Clearly, H}, consists of disjoint pairs, and the same
argument as in (4.44.2) shows that ‘M, U’N,.,,, does not
contain any of the indices which have been selected earlier.
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(4.44.4)  Finally, if | €'N,, for some 1=j=m, then by (4.28) there
exists some I’ €N, with e(I)e(I')= —1 and ¢, (x;) = @i (x:).
Let I’ denote the collection of all these pairs. We add its union
‘N, to L,. As in (4.44.2) and (4.44.3), the definition (4.26) of
N (4.25) and (4.24) show that the elements of ' N, have not
been selected earlier in the construction of L;.

This completes the selection of L. It follows from (4.44) and (4.44.r),
1 = r =4, that the pairing of L, induced by E;*, El* E*, G/, D/, H} and I,
is disjoint, and also satisfies ¢()e(l')= —1 and ¢, (x;) = ¢, (x) for every pair
{L, I’} in this deomposition, and (ar.3.1) follows.

We still have to check (ar.3.2) and (ar.N).

For 1=I=L let

(4.45) g={i:ieT* €L}

(We shall preserve the letter o for the corresponding sets in the arrays “vj),
"V, and 'B4; as in (4.24), we shall also make the following convention: if
1€ U.cr-*M, (ie., | is not an index of an atom in some array of order n — 1)
then we put o(l)=.)

We claim that the following holds:

(446)  Let 1=I=L Then o()C (), |&(DI=]o()|+2, and if
1€ M?* for some 2=j=m—1 then [£(D)]=]|a(])|+2.

Indeed, let iy € o({). The corresponding x; is then an atom of some *v;, ' Vi)
or 'By, with i # i, (since those are arrays w.r.t. {¢:},c7; and i € T%). Then by the
definition of L3*, L}* and L}, I will be an element of one of these sets, and by
444) I €L, ie., in€ £(1). Hence o(I)C £(I). From the above it also follows
that if i, € £(I)\ (1), then [ must be an element of one of the pairs in D}, G/,
H’,, or I,. But this can occur for at most 2 values of i,. Indeed, assume, e.g., that
1 € M* for some 1=j=m.In (4.44.r), 1 =r =4, we have defined D’,, G, H!,,
and I, as pairs {/,1'}. In order to be an element in one of these pairs, | must
satisfy either { € 'Mg, U M5, U Mz, U "Ny, or I €°Nyi,) U Ny, (The second
possibility follows from (4.44.2) and (4.44.3), when [ is actually the “I"” in the
construction of G/;' and H’,".) But 'Mj5,,, *M(,, and *M,%,, are mutually disjoint
(by (4.21.1)) and such are the sets 'N;u,, "N, and *Nj,, too (by (4.26), (4.28),
(4.31) and (4.32)), hence no [ € M* can satisfy the above for more than two
values of i, and it follows that | £(I)| = | o (I)| + 2. Moreover, from the above and

the fact that both {M{;,}, -1 25, ie7+ and {Njg)}i=123,ie7+ are decompositions of M*
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it follows that if I € M* for some 2= j =m — 1, then actually | £(I)| = | o (])| +2,
since in this case (cf. (4.44.r), 1 =r =4) [ must satisfy the above condition for
two values of iy. This proves (4.46).

We are now ready to prove (ar.3.2) for u. By (4.46) and the induction
hypothesis |£(1)|=[a(l)|+2=2(n —1)+2=2n. We also wish to estimate a
lower bound for the cardinality of the set E={l:1=I=L :|£()|=2n};
instead we shall estimate an upper bound for the cardinality of its complement
E*. By (4.46) we have

m

-1
ECCMTUMi',‘,UMfZHU(U U’ iTi))
j=2 ieT*

ulre U U oMUY o) <2 - D)

j=2 ieT*

This follows from the fact that for any other [, [a(I)| =2n ~2, and | € M* for
some 2=j=m—1, and thus, by (4.46), |£(])|=2n. Recall the following

estimates:
IMi|=|Mil=m""  (by(4.20)),

IMEa | =270 (by (4.41) (the last line there) and (4.48)),
PMG =372 em™?  (by (4.37) and (4.34)),

and hence also

<m|T*]3|T*|2em"? =3|T* 2" em"™".

m—1

U U Mg

j=2 ieT*
{I:1E€'Mi, UM, lo(D)]|<2(n = 1)} =3cm™.

(This follows from the induction hypothesis, and (ar.3.2) when applied to *Viiys
'viy and 'Byqy. Note that the norm of each of these arrays is = m"™".) Thus we
also have

m—1
[1eU U (MU M low] <2n -}
j=2 ieT*
<m-|T*|3em" "' =3|T*|em"™".
Adding all this together we obtain

|ES|=m" " +m" '+ 27 L £ 3| T2 em™ ™ + 3| T*|em™ ™!

(4.47) <9|T*f2 leL """

=c(n,|T*)L"""
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(Recall that m"™" = L") This proves that u satisfies (ar.3.2), and completes
the proof that u is an array of order n and constant ¢ (n,| T*|), w.r.t. {¢:}ier~. To
conclude the proof of Theorem 8, we still have to show that u is normal, i.e., that
(ar.N) is satisfied too. So, let £ be a subset of T*, and we wish to estimate
|Zicy-e £ (1)|. Note first that by (ar.3.2), if |£]#2n then

< c(n | T*)L" "
112%%6(1)\ c(n|T*))

(Indeed, if | £] > 2n then the sum is over the empty set, while if | ¢ | < 2n then the
)L™ ) So, let £ C T* with | ¢| =

sum is over a set of cardinality = c(n,
be given.

(4.48) ¢ admits (3)<|T*[° representations of the form ¢=
o U{igt U {ii}, with |o|=2(n —1).

We also have

(4.49) l:§%=5€(l) - £= GU%)U(U} 2<<2m i 10(2‘7 e()

lo{=2(n—-1) IGLUOLI
leMj

Indeed, it follows from (4.44) and (4.44.r), 1 = r =4, and (4.46) (cf. the proof
of (4.46)) that if /€ MTU MU M. or |o(l)|<2(n —1) then | £(])|=2n — 1.
Let us examine the set

{l:-1eM3,leL,NL,,o(l)=0c} (where |o|=2(n-1)).

Recall that in order to be an element of L; (for i o(l)), | € M* must satisfy
either | € 'Mj, UM, U M5 U "N, or 1 €Ny, U*Nq.

Note also that if o(I) = 2(n — 1) then ! & ’N,. Thus, ! must satisfy the above
with both i = iy and i = i), and since both the ‘M/;)’s and the 'N;,’s are disjoint
for different values of i, we conclude that for | € M* with |o(l)| =2(n —1), |
must be an element of both (M5, U M%) and Ny, U N,,). Recall that by
(4.26)

Nigy=r1 (ll)
and for | € My U *Mji, (1) = 7#({io} U o(1)). Thus, the conditions | € M, U

M, and o ()= o actually determine the value of i;, such that [ € N, . It
follows that for some fixed j, o, i, and i,, the sum

g e)=0 if 7ifUo)#is,

IEM
leL,; ﬂL
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and

> = X if 7({ifUa)=1.

R - Ing UMY
Llae(;al;a 1€ Mg MG
teL; nl;, o(h=o

This last sum can be decomposed as

2 e+ > e+ D &)
lia(l)=0 Lio(l)=0o Lio(D)=0c
IEZM!-:,-O) x; Esupp Yiti) xlEsupplfz’-(io)
Recall that *v;,), v, and '#, are all normal arrays, of order n — 1 and norm
=m""', and thus, from an application of (ar.N) to these arrays, it follows that

the modulus of each one of the last three sums does not exceed cm"~>. Hence

()| and also 2 e(l)

LM, UM alD=c
i iend

are bounded by 3cm ">, From the fact that for a given j there are at most | T*|
M,’s, and from (4.49) (and (4.48)), it follows that

S s(l))é(znn)(m—2)|T*l3cm"‘2

14T
=|T*Fm|T*|3em™
=3|T*em™™!
<c(n,|T*HL"",

This concludes the verification of (ar.N) for w, and also the proof of Theorem
8.
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